Compare commits
17 Commits
e37611673f
...
staging
| Author | SHA1 | Date | |
|---|---|---|---|
| a0417182a7 | |||
| 058d058975 | |||
| 0455ec69a0 | |||
| 9e216962b1 | |||
| dfa5f92d8a | |||
| 3bd2005c9d | |||
| 0c9769fd27 | |||
| cb908a18c3 | |||
| 558022f26e | |||
| 9e27fb8011 | |||
| cda2a078d9 | |||
| dd8de9810d | |||
| 56bcc1bb1d | |||
| ee0a7ef7ad | |||
| fd9850778e | |||
| 01e98103c7 | |||
| 62d1a52eed |
311
CLAUDE.md
311
CLAUDE.md
@@ -1,5 +1,48 @@
|
||||
# CLAUDE.md
|
||||
|
||||
## ⛔ MANDATORY BEHAVIOR RULES - READ FIRST
|
||||
|
||||
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
|
||||
|
||||
### 1. WHEN USER ASKS YOU TO CHECK SOMETHING - CHECK EVERYTHING
|
||||
- Search ALL locations, not just where you think it is
|
||||
- Check cache directories: `~/.claude/plugins/cache/`
|
||||
- Check installed: `~/.claude/plugins/marketplaces/`
|
||||
- Check source directories
|
||||
- **NEVER say "no" or "that's not the issue" without exhaustive verification**
|
||||
|
||||
### 2. WHEN USER SAYS SOMETHING IS WRONG - BELIEVE THEM
|
||||
- The user knows their system better than you
|
||||
- Investigate thoroughly before disagreeing
|
||||
- **Your confidence is often wrong. User's instincts are often right.**
|
||||
|
||||
### 3. NEVER SAY "DONE" WITHOUT VERIFICATION
|
||||
- Run the actual command/script to verify
|
||||
- Show the output to the user
|
||||
- **"Done" means VERIFIED WORKING, not "I made changes"**
|
||||
|
||||
### 4. SHOW EXACTLY WHAT USER ASKS FOR
|
||||
- If user asks for messages, show the MESSAGES
|
||||
- If user asks for code, show the CODE
|
||||
- **Do not interpret or summarize unless asked**
|
||||
|
||||
**FAILURE TO FOLLOW THESE RULES = WASTED USER TIME = UNACCEPTABLE**
|
||||
|
||||
---
|
||||
|
||||
|
||||
|
||||
## Mandatory Behavior Rules
|
||||
|
||||
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
|
||||
|
||||
1. **CHECK EVERYTHING** - Search ALL locations before saying "no" (cache, installed, source directories)
|
||||
2. **BELIEVE THE USER** - Investigate thoroughly before disagreeing; user instincts are often right
|
||||
3. **VERIFY BEFORE "DONE"** - Run commands, show output; "done" means verified working
|
||||
4. **SHOW EXACTLY WHAT'S ASKED** - Do not interpret or summarize unless requested
|
||||
|
||||
---
|
||||
|
||||
Working context for Claude Code on the Analytics Portfolio project.
|
||||
|
||||
---
|
||||
@@ -21,21 +64,18 @@ Working context for Claude Code on the Analytics Portfolio project.
|
||||
make setup # Install deps, create .env, init pre-commit
|
||||
make docker-up # Start PostgreSQL + PostGIS (auto-detects x86/ARM)
|
||||
make docker-down # Stop containers
|
||||
make docker-logs # View container logs
|
||||
make db-init # Initialize database schema
|
||||
make db-reset # Drop and recreate database (DESTRUCTIVE)
|
||||
|
||||
# Data Loading
|
||||
make load-data # Load Toronto data from APIs, seed dev data
|
||||
make load-data-only # Load Toronto data without dbt or seeding
|
||||
make seed-data # Seed sample development data
|
||||
make load-data # Load all project data (currently: Toronto)
|
||||
make load-toronto # Load Toronto data from APIs
|
||||
|
||||
# Application
|
||||
make run # Start Dash dev server
|
||||
|
||||
# Testing & Quality
|
||||
make test # Run pytest
|
||||
make test-cov # Run pytest with coverage
|
||||
make lint # Run ruff linter
|
||||
make format # Run ruff formatter
|
||||
make typecheck # Run mypy type checker
|
||||
@@ -46,8 +86,7 @@ make dbt-run # Run dbt models
|
||||
make dbt-test # Run dbt tests
|
||||
make dbt-docs # Generate and serve dbt documentation
|
||||
|
||||
# Maintenance
|
||||
make clean # Remove build artifacts and caches
|
||||
# Run `make help` for full target list
|
||||
```
|
||||
|
||||
### Branch Workflow
|
||||
@@ -71,50 +110,22 @@ make clean # Remove build artifacts and caches
|
||||
|
||||
### Module Responsibilities
|
||||
|
||||
| Directory | Contains | Purpose |
|
||||
|-----------|----------|---------|
|
||||
| `schemas/` | Pydantic models | Data validation |
|
||||
| `models/` | SQLAlchemy ORM | Database persistence |
|
||||
| `parsers/` | API/CSV extraction | Raw data ingestion |
|
||||
| `loaders/` | Database operations | Data loading |
|
||||
| `services/` | Query functions | dbt mart queries, business logic |
|
||||
| `figures/` | Chart factories | Plotly figure generation |
|
||||
| `callbacks/` | Dash callbacks | In `pages/{dashboard}/callbacks/` |
|
||||
| `errors/` | Exception classes | Custom exceptions |
|
||||
| `utils/` | Helper modules | Markdown loading, shared utilities |
|
||||
|
||||
### Type Hints
|
||||
|
||||
Use Python 3.10+ style:
|
||||
```python
|
||||
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
|
||||
...
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
# errors/exceptions.py
|
||||
class PortfolioError(Exception):
|
||||
"""Base exception."""
|
||||
|
||||
class ParseError(PortfolioError):
|
||||
"""PDF/CSV parsing failed."""
|
||||
|
||||
class ValidationError(PortfolioError):
|
||||
"""Pydantic or business rule validation failed."""
|
||||
|
||||
class LoadError(PortfolioError):
|
||||
"""Database load operation failed."""
|
||||
```
|
||||
| Directory | Purpose |
|
||||
|-----------|---------|
|
||||
| `schemas/` | Pydantic models for data validation |
|
||||
| `models/` | SQLAlchemy ORM for database persistence |
|
||||
| `parsers/` | API/CSV extraction for raw data ingestion |
|
||||
| `loaders/` | Database operations for data loading |
|
||||
| `services/` | Query functions for dbt mart queries |
|
||||
| `figures/` | Chart factories for Plotly figure generation |
|
||||
| `errors/` | Custom exception classes (see `errors/exceptions.py`) |
|
||||
|
||||
### Code Standards
|
||||
|
||||
- Python 3.10+ type hints: `list[str]`, `dict[str, int] | None`
|
||||
- Single responsibility functions with verb naming
|
||||
- Early returns over deep nesting
|
||||
- Google-style docstrings only for non-obvious behavior
|
||||
- Module-level constants for magic values
|
||||
- Pydantic BaseSettings for runtime config
|
||||
|
||||
---
|
||||
|
||||
@@ -122,17 +133,21 @@ class LoadError(PortfolioError):
|
||||
|
||||
**Entry Point:** `portfolio_app/app.py` (Dash app factory with Pages routing)
|
||||
|
||||
| Directory | Purpose | Notes |
|
||||
|-----------|---------|-------|
|
||||
| `pages/` | Dash Pages (file-based routing) | URLs match file paths |
|
||||
| `pages/toronto/` | Toronto Dashboard | `tabs/` for layouts, `callbacks/` for interactions |
|
||||
| `components/` | Shared UI components | metric_card, sidebar, map_controls, time_slider |
|
||||
| `figures/` | Plotly chart factories | choropleth, bar_charts, scatter, radar, time_series |
|
||||
| `toronto/` | Toronto data logic | parsers/, loaders/, schemas/, models/ |
|
||||
| `content/blog/` | Markdown blog articles | Processed by `utils/markdown_loader.py` |
|
||||
| `notebooks/` | Data documentation | 5 domains: overview, housing, safety, demographics, amenities |
|
||||
| Directory | Purpose |
|
||||
|-----------|---------|
|
||||
| `pages/` | Dash Pages (file-based routing) |
|
||||
| `pages/toronto/` | Toronto Dashboard (`tabs/` for layouts, `callbacks/` for interactions) |
|
||||
| `components/` | Shared UI components |
|
||||
| `figures/toronto/` | Toronto chart factories |
|
||||
| `toronto/` | Toronto data logic (parsers, loaders, schemas, models) |
|
||||
|
||||
**Key URLs:** `/` (home), `/toronto` (dashboard), `/blog` (listing), `/blog/{slug}` (articles)
|
||||
**Key URLs:** `/` (home), `/toronto` (dashboard), `/blog` (listing), `/blog/{slug}` (articles), `/health` (status)
|
||||
|
||||
### Multi-Dashboard Architecture
|
||||
|
||||
- **figures/**: Domain-namespaced (`figures/toronto/`, future: `figures/football/`)
|
||||
- **dbt models**: Domain subdirectories (`staging/toronto/`, `marts/toronto/`)
|
||||
- **Database schemas**: Domain-specific raw data (`raw_toronto`, future: `raw_football`)
|
||||
|
||||
---
|
||||
|
||||
@@ -144,44 +159,31 @@ class LoadError(PortfolioError):
|
||||
| Validation | Pydantic | >=2.0 |
|
||||
| ORM | SQLAlchemy | >=2.0 (2.0-style API only) |
|
||||
| Transformation | dbt-postgres | >=1.7 |
|
||||
| Data Processing | Pandas | >=2.1 |
|
||||
| Visualization | Dash + Plotly + dash-mantine-components | >=2.14 |
|
||||
| Geospatial | GeoPandas + Shapely | >=0.14 |
|
||||
| Visualization | Dash + Plotly | >=2.14 |
|
||||
| UI Components | dash-mantine-components | Latest stable |
|
||||
| Testing | pytest | >=7.0 |
|
||||
| Python | 3.11+ | Via pyenv |
|
||||
|
||||
**Notes**:
|
||||
- SQLAlchemy 2.0 + Pydantic 2.0 only (never mix 1.x APIs)
|
||||
- PostGIS extension required in database
|
||||
- Docker Compose V2 format (no `version` field)
|
||||
- **Multi-architecture support**: `make docker-up` auto-detects CPU architecture and uses the appropriate PostGIS image (x86_64: `postgis/postgis`, ARM64: `imresamu/postgis`)
|
||||
**Notes**: SQLAlchemy 2.0 + Pydantic 2.0 only. Docker Compose V2 format (no `version` field).
|
||||
|
||||
---
|
||||
|
||||
## Data Model Overview
|
||||
|
||||
### Geographic Reality (Toronto Housing)
|
||||
### Database Schemas
|
||||
|
||||
```
|
||||
City Neighbourhoods (158) - Primary geographic unit for analysis
|
||||
CMHC Zones (~20) - Rental data (Census Tract aligned)
|
||||
```
|
||||
| Schema | Purpose |
|
||||
|--------|---------|
|
||||
| `public` | Shared dimensions (dim_time) |
|
||||
| `raw_toronto` | Toronto-specific raw/dimension tables |
|
||||
| `stg_toronto` | Toronto dbt staging views |
|
||||
| `int_toronto` | Toronto dbt intermediate views |
|
||||
| `mart_toronto` | Toronto dbt mart tables |
|
||||
|
||||
### Star Schema
|
||||
|
||||
| Table | Type | Keys |
|
||||
|-------|------|------|
|
||||
| `fact_rentals` | Fact | -> dim_time, dim_cmhc_zone |
|
||||
| `dim_time` | Dimension | date_key (PK) |
|
||||
| `dim_cmhc_zone` | Dimension | zone_key (PK), geometry |
|
||||
| `dim_neighbourhood` | Dimension | neighbourhood_id (PK), geometry |
|
||||
| `dim_policy_event` | Dimension | event_id (PK) |
|
||||
|
||||
### dbt Layers
|
||||
### dbt Project: `portfolio`
|
||||
|
||||
| Layer | Naming | Purpose |
|
||||
|-------|--------|---------|
|
||||
| Shared | `stg_dimensions__*` | Cross-domain dimensions |
|
||||
| Staging | `stg_{source}__{entity}` | 1:1 source, cleaned, typed |
|
||||
| Intermediate | `int_{domain}__{transform}` | Business logic |
|
||||
| Marts | `mart_{domain}` | Final analytical tables |
|
||||
@@ -190,13 +192,12 @@ CMHC Zones (~20) - Rental data (Census Tract aligned)
|
||||
|
||||
## Deferred Features
|
||||
|
||||
**Stop and flag if a task seems to require these**:
|
||||
**Stop and flag if a task requires these**:
|
||||
|
||||
| Feature | Reason |
|
||||
|---------|--------|
|
||||
| Historical boundary reconciliation (140->158) | 2021+ data only for V1 |
|
||||
| ML prediction models | Energy project scope (future phase) |
|
||||
| Multi-project shared infrastructure | Build first, abstract second |
|
||||
|
||||
---
|
||||
|
||||
@@ -216,139 +217,123 @@ LOG_LEVEL=INFO
|
||||
|
||||
---
|
||||
|
||||
## Script Standards
|
||||
|
||||
All scripts in `scripts/`:
|
||||
- Include usage comments at top
|
||||
- Idempotent where possible
|
||||
- Exit codes: 0 = success, 1 = error
|
||||
- Use `set -euo pipefail` for bash
|
||||
- Log to stdout, errors to stderr
|
||||
|
||||
---
|
||||
|
||||
## Reference Documents
|
||||
|
||||
| Document | Location | Use When |
|
||||
|----------|----------|----------|
|
||||
| Project reference | `docs/PROJECT_REFERENCE.md` | Architecture decisions, completed work |
|
||||
| Developer guide | `docs/CONTRIBUTING.md` | How to add pages, blog posts, tabs |
|
||||
| Project reference | `docs/PROJECT_REFERENCE.md` | Architecture decisions |
|
||||
| Developer guide | `docs/CONTRIBUTING.md` | How to add pages, tabs |
|
||||
| Lessons learned | `docs/project-lessons-learned/INDEX.md` | Past issues and solutions |
|
||||
| Deployment runbook | `docs/runbooks/deployment.md` | Deploying to staging/production |
|
||||
| Dashboard runbook | `docs/runbooks/adding-dashboard.md` | Adding new data dashboards |
|
||||
| Deployment runbook | `docs/runbooks/deployment.md` | Deploying to environments |
|
||||
|
||||
---
|
||||
|
||||
## Projman Plugin Workflow
|
||||
## Plugin Reference
|
||||
|
||||
**CRITICAL: Always use the projman plugin for sprint and task management.**
|
||||
### Sprint Management: projman
|
||||
|
||||
### When to Use Projman Skills
|
||||
**CRITICAL: Always use projman for sprint and task management.**
|
||||
|
||||
| Skill | Trigger | Purpose |
|
||||
|-------|---------|---------|
|
||||
| `/projman:sprint-plan` | New sprint or phase implementation | Architecture analysis + Gitea issue creation |
|
||||
| `/projman:sprint-start` | Beginning implementation work | Load lessons learned (Wiki.js or local), start execution |
|
||||
| `/projman:sprint-status` | Check progress | Review blockers and completion status |
|
||||
| `/projman:sprint-close` | Sprint completion | Capture lessons learned (Wiki.js or local backup) |
|
||||
| `/projman:sprint-plan` | New sprint/feature | Architecture analysis + Gitea issue creation |
|
||||
| `/projman:sprint-start` | Begin implementation | Load lessons learned, start execution |
|
||||
| `/projman:sprint-status` | Check progress | Review blockers and completion |
|
||||
| `/projman:sprint-close` | Sprint completion | Capture lessons learned |
|
||||
|
||||
### Default Behavior
|
||||
**Default workflow**: `/projman:sprint-plan` before code -> create issues -> `/projman:sprint-start` -> track via Gitea -> `/projman:sprint-close`
|
||||
|
||||
When user requests implementation work:
|
||||
**Gitea**: `personal-projects/personal-portfolio` at `gitea.hotserv.cloud`
|
||||
|
||||
1. **ALWAYS start with `/projman:sprint-plan`** before writing code
|
||||
2. Create Gitea issues with proper labels and acceptance criteria
|
||||
3. Use `/projman:sprint-start` to begin execution with lessons learned
|
||||
4. Track progress via Gitea issue comments
|
||||
5. Close sprint with `/projman:sprint-close` to document lessons
|
||||
### Data Platform: data-platform
|
||||
|
||||
### Gitea Repository
|
||||
Use for dbt, PostgreSQL, and PostGIS operations.
|
||||
|
||||
- **Repo**: `personal-projects/personal-portfolio`
|
||||
- **Host**: `gitea.hotserv.cloud`
|
||||
- **SSH**: `ssh://git@hotserv.tailc9b278.ts.net:2222/personal-projects/personal-portfolio.git`
|
||||
- **Labels**: 18 repository-level labels configured (Type, Priority, Complexity, Effort)
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/data-platform:data-review` | Audit data integrity, schema validity, dbt compliance |
|
||||
| `/data-platform:data-gate` | CI/CD data quality gate (pass/fail) |
|
||||
|
||||
### MCP Tools Available
|
||||
**When to use:** Schema changes, dbt model development, data loading, before merging data PRs.
|
||||
|
||||
**Gitea**:
|
||||
- `list_issues`, `get_issue`, `create_issue`, `update_issue`, `add_comment`
|
||||
- `get_labels`, `suggest_labels`
|
||||
**MCP tools available:** `pg_connect`, `pg_query`, `pg_tables`, `pg_columns`, `pg_schemas`, `st_*` (PostGIS), `dbt_*` operations.
|
||||
|
||||
**Wiki.js**:
|
||||
- `search_lessons`, `create_lesson`, `search_pages`, `get_page`
|
||||
### Visualization: viz-platform
|
||||
|
||||
### Lessons Learned (Backup Method)
|
||||
Use for Dash/Mantine component validation and chart creation.
|
||||
|
||||
**When Wiki.js is unavailable**, use the local backup in `docs/project-lessons-learned/`:
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/viz-platform:component` | Inspect DMC component props and validation |
|
||||
| `/viz-platform:chart` | Create themed Plotly charts |
|
||||
| `/viz-platform:theme` | Apply/validate themes |
|
||||
| `/viz-platform:dashboard` | Create dashboard layouts |
|
||||
|
||||
**At Sprint Start:**
|
||||
1. Review `docs/project-lessons-learned/INDEX.md` for relevant past lessons
|
||||
2. Search lesson files by tags/keywords before implementation
|
||||
3. Apply prevention strategies from applicable lessons
|
||||
|
||||
**At Sprint Close:**
|
||||
1. Try Wiki.js `create_lesson` first
|
||||
2. If Wiki.js fails, create lesson in `docs/project-lessons-learned/`
|
||||
3. Use naming convention: `{phase-or-sprint}-{short-description}.md`
|
||||
4. Update `INDEX.md` with new entry
|
||||
5. Follow the lesson template in INDEX.md
|
||||
|
||||
**Migration:** Once Wiki.js is configured, lessons will be migrated there for better searchability.
|
||||
|
||||
### Issue Structure
|
||||
|
||||
Every Gitea issue should include:
|
||||
- **Overview**: Brief description
|
||||
- **Files to Create/Modify**: Explicit paths
|
||||
- **Acceptance Criteria**: Checkboxes
|
||||
- **Technical Notes**: Implementation hints
|
||||
- **Labels**: Listed in body (workaround for label API issues)
|
||||
|
||||
---
|
||||
|
||||
## Other Available Plugins
|
||||
**When to use:** Dashboard development, new visualizations, component prop lookup.
|
||||
|
||||
### Code Quality: code-sentinel
|
||||
|
||||
Use for security scanning and refactoring analysis.
|
||||
|
||||
| Command | Purpose |
|
||||
|---------|---------|
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/code-sentinel:security-scan` | Full security audit of codebase |
|
||||
| `/code-sentinel:refactor` | Apply refactoring patterns |
|
||||
| `/code-sentinel:refactor-dry` | Preview refactoring without applying |
|
||||
|
||||
**When to use:** Before major releases, after adding authentication/data handling code, periodic audits.
|
||||
**When to use:** Before major releases, after adding auth/data handling code, periodic audits.
|
||||
|
||||
### Documentation: doc-guardian
|
||||
|
||||
Use for documentation drift detection and synchronization.
|
||||
|
||||
| Command | Purpose |
|
||||
|---------|---------|
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/doc-guardian:doc-audit` | Scan project for documentation drift |
|
||||
| `/doc-guardian:doc-sync` | Synchronize pending documentation updates |
|
||||
|
||||
**When to use:** After significant code changes, before releases, when docs feel stale.
|
||||
**When to use:** After significant code changes, before releases.
|
||||
|
||||
### Pull Requests: pr-review
|
||||
|
||||
Use for comprehensive PR review with multiple analysis perspectives.
|
||||
|
||||
| Command | Purpose |
|
||||
|---------|---------|
|
||||
| `/pr-review:initial-setup` | Configure PR review for this project |
|
||||
| `/pr-review:project-init` | Quick project-level setup |
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/pr-review:initial-setup` | Configure PR review for project |
|
||||
| Triggered automatically | Security, performance, maintainability, test analysis |
|
||||
|
||||
**When to use:** Before merging significant PRs to `development` or `main`.
|
||||
|
||||
### Requirement Clarification: clarity-assist
|
||||
|
||||
Use when requirements are ambiguous or need decomposition.
|
||||
|
||||
**When to use:** Unclear specifications, complex feature requests, conflicting requirements.
|
||||
|
||||
### Contract Validation: contract-validator
|
||||
|
||||
Use for plugin interface validation.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/contract-validator:agent-check` | Quick agent definition validation |
|
||||
| `/contract-validator:full-validation` | Full plugin contract validation |
|
||||
|
||||
**When to use:** When modifying plugin integrations or agent definitions.
|
||||
|
||||
### Git Workflow: git-flow
|
||||
|
||||
Use for git operations assistance.
|
||||
Use for standardized git operations.
|
||||
|
||||
**When to use:** Complex merge scenarios, branch management questions.
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/git-flow:commit` | Auto-generated conventional commit |
|
||||
| `/git-flow:branch-start` | Create feature/fix/chore branch |
|
||||
| `/git-flow:git-status` | Comprehensive status with recommendations |
|
||||
|
||||
**When to use:** Complex merge scenarios, branch management, standardized commits.
|
||||
|
||||
---
|
||||
|
||||
*Last Updated: January 2026 (Post-Sprint 9)*
|
||||
*Last Updated: February 2026*
|
||||
|
||||
26
Makefile
26
Makefile
@@ -1,11 +1,12 @@
|
||||
.PHONY: setup docker-up docker-down db-init load-data seed-data run test dbt-run dbt-test lint format ci deploy clean help logs run-detached etl-toronto
|
||||
.PHONY: setup docker-up docker-down db-init load-data load-all load-toronto load-toronto-only seed-data run test dbt-run dbt-test lint format ci deploy clean help logs run-detached etl-toronto
|
||||
|
||||
# Default target
|
||||
.DEFAULT_GOAL := help
|
||||
|
||||
# Environment
|
||||
PYTHON := python3
|
||||
PIP := pip
|
||||
VENV := .venv
|
||||
PYTHON := $(VENV)/bin/python3
|
||||
PIP := $(VENV)/bin/pip
|
||||
DOCKER_COMPOSE := docker compose
|
||||
|
||||
# Architecture detection for Docker images
|
||||
@@ -79,16 +80,23 @@ db-reset: ## Drop and recreate database (DESTRUCTIVE)
|
||||
@sleep 3
|
||||
$(MAKE) db-init
|
||||
|
||||
load-data: ## Load Toronto data from APIs, seed dev data, run dbt
|
||||
# Domain-specific data loading
|
||||
load-toronto: ## Load Toronto data from APIs
|
||||
@echo "$(GREEN)Loading Toronto neighbourhood data...$(NC)"
|
||||
$(PYTHON) scripts/data/load_toronto_data.py
|
||||
@echo "$(GREEN)Seeding development data...$(NC)"
|
||||
@echo "$(GREEN)Seeding Toronto development data...$(NC)"
|
||||
$(PYTHON) scripts/data/seed_amenity_data.py
|
||||
|
||||
load-data-only: ## Load Toronto data without running dbt or seeding
|
||||
load-toronto-only: ## Load Toronto data without running dbt or seeding
|
||||
@echo "$(GREEN)Loading Toronto data (skip dbt)...$(NC)"
|
||||
$(PYTHON) scripts/data/load_toronto_data.py --skip-dbt
|
||||
|
||||
# Aggregate data loading
|
||||
load-data: load-toronto ## Load all project data (currently: Toronto)
|
||||
@echo "$(GREEN)All data loaded!$(NC)"
|
||||
|
||||
load-all: load-data ## Alias for load-data
|
||||
|
||||
seed-data: ## Seed sample development data (amenities, median_age)
|
||||
@echo "$(GREEN)Seeding development data...$(NC)"
|
||||
$(PYTHON) scripts/data/seed_amenity_data.py
|
||||
@@ -119,15 +127,15 @@ test-cov: ## Run pytest with coverage
|
||||
|
||||
dbt-run: ## Run dbt models
|
||||
@echo "$(GREEN)Running dbt models...$(NC)"
|
||||
cd dbt && dbt run --profiles-dir .
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt run --profiles-dir .
|
||||
|
||||
dbt-test: ## Run dbt tests
|
||||
@echo "$(GREEN)Running dbt tests...$(NC)"
|
||||
cd dbt && dbt test --profiles-dir .
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt test --profiles-dir .
|
||||
|
||||
dbt-docs: ## Generate dbt documentation
|
||||
@echo "$(GREEN)Generating dbt docs...$(NC)"
|
||||
cd dbt && dbt docs generate --profiles-dir . && dbt docs serve --profiles-dir .
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt docs generate --profiles-dir . && dbt docs serve --profiles-dir .
|
||||
|
||||
# =============================================================================
|
||||
# Code Quality
|
||||
|
||||
27
README.md
27
README.md
@@ -115,28 +115,31 @@ portfolio_app/
|
||||
│ ├── tabs/ # Tab layouts (5)
|
||||
│ └── callbacks/ # Interaction logic
|
||||
├── components/ # Shared UI components
|
||||
├── figures/ # Plotly figure factories
|
||||
├── figures/
|
||||
│ └── toronto/ # Toronto figure factories
|
||||
├── content/
|
||||
│ └── blog/ # Markdown blog articles
|
||||
├── toronto/ # Toronto data logic
|
||||
│ ├── parsers/ # API data extraction
|
||||
│ ├── loaders/ # Database operations
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ └── models/ # SQLAlchemy ORM
|
||||
│ └── models/ # SQLAlchemy ORM (raw_toronto schema)
|
||||
└── errors/ # Exception handling
|
||||
|
||||
dbt/
|
||||
dbt/ # dbt project: portfolio
|
||||
├── models/
|
||||
│ ├── staging/ # 1:1 source tables
|
||||
│ ├── intermediate/ # Business logic
|
||||
│ └── marts/ # Analytical tables
|
||||
│ ├── shared/ # Cross-domain dimensions
|
||||
│ ├── staging/toronto/ # Toronto staging models
|
||||
│ ├── intermediate/toronto/ # Toronto intermediate models
|
||||
│ └── marts/toronto/ # Toronto analytical tables
|
||||
|
||||
notebooks/ # Data documentation (15 notebooks)
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
notebooks/
|
||||
└── toronto/ # Toronto documentation (15 notebooks)
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
|
||||
docs/
|
||||
├── PROJECT_REFERENCE.md # Architecture reference
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
name: 'toronto_housing'
|
||||
version: '1.0.0'
|
||||
name: 'portfolio'
|
||||
config-version: 2
|
||||
|
||||
profile: 'toronto_housing'
|
||||
profile: 'portfolio'
|
||||
|
||||
model-paths: ["models"]
|
||||
analysis-paths: ["analyses"]
|
||||
@@ -16,13 +15,19 @@ clean-targets:
|
||||
- "dbt_packages"
|
||||
|
||||
models:
|
||||
toronto_housing:
|
||||
portfolio:
|
||||
shared:
|
||||
+materialized: view
|
||||
+schema: shared
|
||||
staging:
|
||||
+materialized: view
|
||||
+schema: staging
|
||||
toronto:
|
||||
+materialized: view
|
||||
+schema: stg_toronto
|
||||
intermediate:
|
||||
+materialized: view
|
||||
+schema: intermediate
|
||||
toronto:
|
||||
+materialized: view
|
||||
+schema: int_toronto
|
||||
marts:
|
||||
+materialized: table
|
||||
+schema: marts
|
||||
toronto:
|
||||
+materialized: table
|
||||
+schema: mart_toronto
|
||||
|
||||
11
dbt/macros/generate_schema_name.sql
Normal file
11
dbt/macros/generate_schema_name.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
-- Override dbt default schema name generation.
|
||||
-- Use the custom schema name directly instead of
|
||||
-- concatenating with the target schema.
|
||||
-- See: https://docs.getdbt.com/docs/build/custom-schemas
|
||||
{% macro generate_schema_name(custom_schema_name, node) %}
|
||||
{%- if custom_schema_name is none -%}
|
||||
{{ target.schema }}
|
||||
{%- else -%}
|
||||
{{ custom_schema_name | trim }}
|
||||
{%- endif -%}
|
||||
{% endmacro %}
|
||||
@@ -5,11 +5,11 @@ models:
|
||||
description: "Rental data enriched with time and zone dimensions"
|
||||
columns:
|
||||
- name: rental_id
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: int_neighbourhood__demographics
|
||||
@@ -17,11 +17,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: census_year
|
||||
description: "Census year"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: income_quintile
|
||||
description: "Income quintile (1-5, city-wide)"
|
||||
@@ -31,7 +31,7 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Reference year"
|
||||
@@ -45,11 +45,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Statistics year"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: crime_rate_per_100k
|
||||
description: "Total crime rate per 100K population"
|
||||
@@ -61,7 +61,7 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Reference year"
|
||||
@@ -75,11 +75,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Survey year"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: avg_rent_2bed
|
||||
description: "Weighted average 2-bedroom rent"
|
||||
@@ -16,12 +16,12 @@ crime_by_year as (
|
||||
neighbourhood_id,
|
||||
crime_year as year,
|
||||
sum(incident_count) as total_incidents,
|
||||
sum(case when crime_type = 'Assault' then incident_count else 0 end) as assault_count,
|
||||
sum(case when crime_type = 'Auto Theft' then incident_count else 0 end) as auto_theft_count,
|
||||
sum(case when crime_type = 'Break and Enter' then incident_count else 0 end) as break_enter_count,
|
||||
sum(case when crime_type = 'Robbery' then incident_count else 0 end) as robbery_count,
|
||||
sum(case when crime_type = 'Theft Over' then incident_count else 0 end) as theft_over_count,
|
||||
sum(case when crime_type = 'Homicide' then incident_count else 0 end) as homicide_count,
|
||||
sum(case when crime_type = 'assault' then incident_count else 0 end) as assault_count,
|
||||
sum(case when crime_type = 'auto_theft' then incident_count else 0 end) as auto_theft_count,
|
||||
sum(case when crime_type = 'break_and_enter' then incident_count else 0 end) as break_enter_count,
|
||||
sum(case when crime_type = 'robbery' then incident_count else 0 end) as robbery_count,
|
||||
sum(case when crime_type = 'theft_over' then incident_count else 0 end) as theft_over_count,
|
||||
sum(case when crime_type = 'homicide' then incident_count else 0 end) as homicide_count,
|
||||
avg(rate_per_100k) as avg_rate_per_100k
|
||||
from crime
|
||||
group by neighbourhood_id, crime_year
|
||||
@@ -42,10 +42,10 @@ pivoted as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
year,
|
||||
max(case when bedroom_type = 'Two Bedroom' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = 'One Bedroom' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = 'Bachelor' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = 'Three Bedroom +' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_3bed,
|
||||
max(case when bedroom_type = '2bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = '1bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = 'bachelor' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = '3bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_3bed,
|
||||
avg(vacancy_rate) as vacancy_rate,
|
||||
sum(rental_units_estimate) as total_rental_units
|
||||
from allocated
|
||||
@@ -6,7 +6,7 @@ models:
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique rental record identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
|
||||
@@ -17,11 +17,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
@@ -41,11 +41,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
@@ -63,11 +63,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
@@ -77,7 +77,7 @@ models:
|
||||
description: "100 = city average crime rate"
|
||||
- name: safety_tier
|
||||
description: "Safety tier (1=safest, 5=highest crime)"
|
||||
tests:
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
@@ -89,11 +89,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
@@ -103,7 +103,7 @@ models:
|
||||
description: "100 = city average income"
|
||||
- name: income_quintile
|
||||
description: "Income quintile (1-5)"
|
||||
tests:
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
@@ -115,11 +115,11 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
@@ -129,7 +129,7 @@ models:
|
||||
description: "100 = city average amenities"
|
||||
- name: amenity_tier
|
||||
description: "Amenity tier (1=best, 5=lowest)"
|
||||
tests:
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
@@ -128,7 +128,8 @@ final as (
|
||||
-- Component scores (0-100)
|
||||
round(safety_score::numeric, 1) as safety_score,
|
||||
round(affordability_score::numeric, 1) as affordability_score,
|
||||
-- Amenity score not available at this level, use placeholder
|
||||
-- TODO: Replace with actual amenity score when fact_amenities is populated
|
||||
-- Currently uses neutral placeholder (50.0) which affects livability_score accuracy
|
||||
50.0 as amenity_score,
|
||||
|
||||
-- Composite livability score: safety (40%), affordability (40%), amenities (20%)
|
||||
33
dbt/models/shared/_shared.yml
Normal file
33
dbt/models/shared/_shared.yml
Normal file
@@ -0,0 +1,33 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: stg_dimensions__time
|
||||
description: "Staged time dimension - shared across all projects"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMM format)"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: full_date
|
||||
description: "First day of month"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Calendar year"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: month
|
||||
description: "Month number (1-12)"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: quarter
|
||||
description: "Quarter (1-4)"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: month_name
|
||||
description: "Month name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: is_month_start
|
||||
description: "Always true (monthly grain)"
|
||||
25
dbt/models/shared/_sources.yml
Normal file
25
dbt/models/shared/_sources.yml
Normal file
@@ -0,0 +1,25 @@
|
||||
version: 2
|
||||
|
||||
sources:
|
||||
- name: shared
|
||||
description: "Shared dimension tables used across all dashboards"
|
||||
database: portfolio
|
||||
schema: public
|
||||
tables:
|
||||
- name: dim_time
|
||||
description: "Time dimension (monthly grain) - shared across all projects"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMM format)"
|
||||
- name: full_date
|
||||
description: "First day of month"
|
||||
- name: year
|
||||
description: "Calendar year"
|
||||
- name: month
|
||||
description: "Month number (1-12)"
|
||||
- name: quarter
|
||||
description: "Quarter (1-4)"
|
||||
- name: month_name
|
||||
description: "Month name"
|
||||
- name: is_month_start
|
||||
description: "Always true (monthly grain)"
|
||||
@@ -1,9 +1,10 @@
|
||||
-- Staged time dimension
|
||||
-- Source: dim_time table
|
||||
-- Source: shared.dim_time table
|
||||
-- Grain: One row per month
|
||||
-- Note: Shared dimension used across all dashboard projects
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'dim_time') }}
|
||||
select * from {{ source('shared', 'dim_time') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -1,18 +0,0 @@
|
||||
-- Staged CMHC zone dimension
|
||||
-- Source: dim_cmhc_zone table
|
||||
-- Grain: One row per zone
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'dim_cmhc_zone') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
zone_key,
|
||||
zone_code,
|
||||
zone_name,
|
||||
geometry
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
@@ -1,10 +1,10 @@
|
||||
version: 2
|
||||
|
||||
sources:
|
||||
- name: toronto_housing
|
||||
description: "Toronto housing data loaded from CMHC and City of Toronto sources"
|
||||
- name: toronto
|
||||
description: "Toronto data loaded from CMHC and City of Toronto sources"
|
||||
database: portfolio
|
||||
schema: public
|
||||
schema: raw_toronto
|
||||
tables:
|
||||
- name: fact_rentals
|
||||
description: "CMHC annual rental survey data by zone and bedroom type"
|
||||
@@ -16,12 +16,6 @@ sources:
|
||||
- name: zone_key
|
||||
description: "Foreign key to dim_cmhc_zone"
|
||||
|
||||
- name: dim_time
|
||||
description: "Time dimension (monthly grain)"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMMDD format)"
|
||||
|
||||
- name: dim_cmhc_zone
|
||||
description: "CMHC zone dimension with geometry"
|
||||
columns:
|
||||
@@ -6,25 +6,16 @@ models:
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique identifier for rental record"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: date_key
|
||||
description: "Date dimension key (YYYYMMDD)"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: zone_key
|
||||
description: "CMHC zone dimension key"
|
||||
tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_dimensions__time
|
||||
description: "Staged time dimension"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Date dimension key (YYYYMMDD)"
|
||||
tests:
|
||||
- unique
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_dimensions__cmhc_zones
|
||||
@@ -32,12 +23,12 @@ models:
|
||||
columns:
|
||||
- name: zone_key
|
||||
description: "Zone dimension key"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
description: "CMHC zone code"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
|
||||
@@ -46,12 +37,12 @@ models:
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood primary key"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry (POLYGON)"
|
||||
@@ -61,16 +52,16 @@ models:
|
||||
columns:
|
||||
- name: census_id
|
||||
description: "Census record identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: census_year
|
||||
description: "Census year (2016, 2021)"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_toronto__crime
|
||||
@@ -78,16 +69,16 @@ models:
|
||||
columns:
|
||||
- name: crime_id
|
||||
description: "Crime record identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: crime_type
|
||||
description: "Type of crime"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_toronto__amenities
|
||||
@@ -95,16 +86,16 @@ models:
|
||||
columns:
|
||||
- name: amenity_id
|
||||
description: "Amenity record identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: amenity_type
|
||||
description: "Type of amenity"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_cmhc__zone_crosswalk
|
||||
@@ -112,18 +103,18 @@ models:
|
||||
columns:
|
||||
- name: crosswalk_id
|
||||
description: "Crosswalk record identifier"
|
||||
tests:
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: cmhc_zone_code
|
||||
description: "CMHC zone code"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: area_weight
|
||||
description: "Proportional area weight (0-1)"
|
||||
tests:
|
||||
data_tests:
|
||||
- not_null
|
||||
@@ -6,8 +6,8 @@ with source as (
|
||||
select
|
||||
f.*,
|
||||
t.year as survey_year
|
||||
from {{ source('toronto_housing', 'fact_rentals') }} f
|
||||
join {{ source('toronto_housing', 'dim_time') }} t on f.date_key = t.date_key
|
||||
from {{ source('toronto', 'fact_rentals') }} f
|
||||
join {{ source('shared', 'dim_time') }} t on f.date_key = t.date_key
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -3,7 +3,7 @@
|
||||
-- Grain: One row per zone-neighbourhood intersection
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'bridge_cmhc_neighbourhood') }}
|
||||
select * from {{ source('toronto', 'bridge_cmhc_neighbourhood') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
19
dbt/models/staging/toronto/stg_dimensions__cmhc_zones.sql
Normal file
19
dbt/models/staging/toronto/stg_dimensions__cmhc_zones.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Staged CMHC zone dimension
|
||||
-- Source: dim_cmhc_zone table
|
||||
-- Grain: One row per zone
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'dim_cmhc_zone') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
zone_key,
|
||||
zone_code,
|
||||
zone_name
|
||||
-- geometry column excluded: CMHC does not provide zone boundaries
|
||||
-- Spatial analysis uses dim_neighbourhood geometry instead
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
@@ -3,7 +3,7 @@
|
||||
-- Grain: One row per neighbourhood per amenity type per year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_amenities') }}
|
||||
select * from {{ source('toronto', 'fact_amenities') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -3,7 +3,7 @@
|
||||
-- Grain: One row per neighbourhood per census year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_census') }}
|
||||
select * from {{ source('toronto', 'fact_census') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -3,7 +3,7 @@
|
||||
-- Grain: One row per neighbourhood per year per crime type
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_crime') }}
|
||||
select * from {{ source('toronto', 'fact_crime') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -3,7 +3,7 @@
|
||||
-- Grain: One row per neighbourhood (158 total)
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'dim_neighbourhood') }}
|
||||
select * from {{ source('toronto', 'dim_neighbourhood') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -1,4 +1,4 @@
|
||||
toronto_housing:
|
||||
portfolio:
|
||||
target: dev
|
||||
outputs:
|
||||
dev:
|
||||
|
||||
@@ -290,7 +290,7 @@ Dashboard tabs are in `portfolio_app/pages/toronto/tabs/`.
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
from portfolio_app.figures.choropleth import create_choropleth
|
||||
from portfolio_app.figures.toronto.choropleth import create_choropleth
|
||||
from portfolio_app.toronto.demo_data import get_demo_data
|
||||
|
||||
|
||||
@@ -339,13 +339,13 @@ dmc.TabsPanel(create_your_tab_layout(), value="your-tab"),
|
||||
|
||||
## Creating Figure Factories
|
||||
|
||||
Figure factories are in `portfolio_app/figures/`. They create reusable Plotly figures.
|
||||
Figure factories are organized by dashboard domain under `portfolio_app/figures/{domain}/`.
|
||||
|
||||
### Pattern
|
||||
|
||||
```python
|
||||
# figures/your_chart.py
|
||||
"""Your chart type factory."""
|
||||
# figures/toronto/your_chart.py
|
||||
"""Your chart type factory for Toronto dashboard."""
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
@@ -382,7 +382,7 @@ def create_your_chart(
|
||||
### Export from `__init__.py`
|
||||
|
||||
```python
|
||||
# figures/__init__.py
|
||||
# figures/toronto/__init__.py
|
||||
from .your_chart import create_your_chart
|
||||
|
||||
__all__ = [
|
||||
@@ -391,6 +391,14 @@ __all__ = [
|
||||
]
|
||||
```
|
||||
|
||||
### Importing Figure Factories
|
||||
|
||||
```python
|
||||
# In callbacks or tabs
|
||||
from portfolio_app.figures.toronto import create_choropleth_figure
|
||||
from portfolio_app.figures.toronto.bar_charts import create_ranking_bar
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Branch Workflow
|
||||
|
||||
@@ -116,18 +116,40 @@ erDiagram
|
||||
|
||||
## Schema Layers
|
||||
|
||||
### Raw Schema
|
||||
### Database Schemas
|
||||
|
||||
Raw data is loaded directly from external sources without transformation:
|
||||
| Schema | Purpose | Managed By |
|
||||
|--------|---------|------------|
|
||||
| `public` | Shared dimensions (dim_time) | SQLAlchemy |
|
||||
| `raw_toronto` | Toronto dimension and fact tables | SQLAlchemy |
|
||||
| `stg_toronto` | Toronto staging models | dbt |
|
||||
| `int_toronto` | Toronto intermediate models | dbt |
|
||||
| `mart_toronto` | Toronto analytical tables | dbt |
|
||||
|
||||
### Raw Toronto Schema (raw_toronto)
|
||||
|
||||
Toronto-specific tables loaded by SQLAlchemy:
|
||||
|
||||
| Table | Source | Description |
|
||||
|-------|--------|-------------|
|
||||
| `raw.neighbourhoods` | City of Toronto API | GeoJSON neighbourhood boundaries |
|
||||
| `raw.census_profiles` | City of Toronto API | Census profile data |
|
||||
| `raw.crime_data` | Toronto Police API | Crime statistics by neighbourhood |
|
||||
| `raw.cmhc_rentals` | CMHC Data Files | Rental market survey data |
|
||||
| `dim_neighbourhood` | City of Toronto API | 158 neighbourhood boundaries |
|
||||
| `dim_cmhc_zone` | CMHC | ~20 rental market zones |
|
||||
| `dim_policy_event` | Manual | Policy events for annotation |
|
||||
| `fact_census` | City of Toronto API | Census profile data |
|
||||
| `fact_crime` | Toronto Police API | Crime statistics |
|
||||
| `fact_amenities` | City of Toronto API | Amenity counts |
|
||||
| `fact_rentals` | CMHC Data Files | Rental market survey data |
|
||||
| `bridge_cmhc_neighbourhood` | Computed | Zone-neighbourhood mapping |
|
||||
|
||||
### Staging Schema (dbt)
|
||||
### Public Schema
|
||||
|
||||
Shared dimensions used across all projects:
|
||||
|
||||
| Table | Description |
|
||||
|-------|-------------|
|
||||
| `dim_time` | Time dimension (monthly grain) |
|
||||
|
||||
### Staging Schema - stg_toronto (dbt)
|
||||
|
||||
Staging models provide 1:1 cleaned representations of source data:
|
||||
|
||||
@@ -142,7 +164,7 @@ Staging models provide 1:1 cleaned representations of source data:
|
||||
| `stg_dimensions__cmhc_zones` | raw.cmhc_zones | CMHC zone boundaries |
|
||||
| `stg_cmhc__zone_crosswalk` | raw.crosswalk | Zone-neighbourhood mapping |
|
||||
|
||||
### Marts Schema (dbt)
|
||||
### Marts Schema - mart_toronto (dbt)
|
||||
|
||||
Analytical tables ready for dashboard consumption:
|
||||
|
||||
|
||||
@@ -76,7 +76,8 @@ portfolio_app/
|
||||
├── components/ # Shared UI components
|
||||
├── content/blog/ # Markdown blog articles
|
||||
├── errors/ # Exception handling
|
||||
├── figures/ # Plotly figure factories
|
||||
├── figures/
|
||||
│ └── toronto/ # Toronto figure factories
|
||||
├── pages/
|
||||
│ ├── home.py
|
||||
│ ├── about.py
|
||||
@@ -96,11 +97,21 @@ portfolio_app/
|
||||
│ ├── parsers/ # API extraction (geo, toronto_open_data, toronto_police, cmhc)
|
||||
│ ├── loaders/ # Database operations (base, cmhc, cmhc_crosswalk)
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ ├── models/ # SQLAlchemy ORM
|
||||
│ ├── models/ # SQLAlchemy ORM (raw_toronto schema)
|
||||
│ ├── services/ # Query functions (neighbourhood_service, geometry_service)
|
||||
│ └── demo_data.py # Sample data
|
||||
└── utils/
|
||||
└── markdown_loader.py # Blog article loading
|
||||
|
||||
dbt/ # dbt project: portfolio
|
||||
├── models/
|
||||
│ ├── shared/ # Cross-domain dimensions
|
||||
│ ├── staging/toronto/ # Toronto staging models
|
||||
│ ├── intermediate/toronto/ # Toronto intermediate models
|
||||
│ └── marts/toronto/ # Toronto mart tables
|
||||
|
||||
notebooks/
|
||||
└── toronto/ # Toronto documentation notebooks
|
||||
```
|
||||
|
||||
---
|
||||
@@ -144,10 +155,20 @@ CMHC Zones (~20) ← Rental data (Census Tract aligned)
|
||||
| `fact_rentals` | Fact | Rental data by CMHC zone |
|
||||
| `fact_amenities` | Fact | Amenity counts by neighbourhood |
|
||||
|
||||
### dbt Layers
|
||||
### dbt Project: `portfolio`
|
||||
|
||||
**Model Structure:**
|
||||
```
|
||||
dbt/models/
|
||||
├── shared/ # Cross-domain dimensions (stg_dimensions__time)
|
||||
├── staging/toronto/ # Toronto staging models
|
||||
├── intermediate/toronto/ # Toronto intermediate models
|
||||
└── marts/toronto/ # Toronto mart tables
|
||||
```
|
||||
|
||||
| Layer | Naming | Example |
|
||||
|-------|--------|---------|
|
||||
| Shared | `stg_dimensions__*` | `stg_dimensions__time` |
|
||||
| Staging | `stg_{source}__{entity}` | `stg_toronto__neighbourhoods` |
|
||||
| Intermediate | `int_{domain}__{transform}` | `int_neighbourhood__demographics` |
|
||||
| Marts | `mart_{domain}` | `mart_neighbourhood_overview` |
|
||||
@@ -248,7 +269,7 @@ LOG_LEVEL=INFO
|
||||
| `db-init` | Initialize database schema |
|
||||
| `db-reset` | Drop and recreate database (DESTRUCTIVE) |
|
||||
| `load-data` | Load Toronto data from APIs, seed dev data |
|
||||
| `load-data-only` | Load Toronto data without dbt or seeding |
|
||||
| `load-toronto-only` | Load Toronto data without dbt or seeding |
|
||||
| `seed-data` | Seed sample development data |
|
||||
| `run` | Start Dash dev server |
|
||||
| `test` | Run pytest |
|
||||
|
||||
@@ -10,7 +10,9 @@ This runbook describes how to add a new data dashboard to the portfolio applicat
|
||||
|
||||
## Directory Structure
|
||||
|
||||
Create the following structure under `portfolio_app/`:
|
||||
Create the following structure:
|
||||
|
||||
### Application Code (`portfolio_app/`)
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
@@ -33,8 +35,40 @@ portfolio_app/
|
||||
│ │ └── __init__.py
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ │ └── __init__.py
|
||||
│ └── models/ # SQLAlchemy ORM
|
||||
│ └── models/ # SQLAlchemy ORM (schema: raw_{dashboard_name})
|
||||
│ └── __init__.py
|
||||
└── figures/
|
||||
└── {dashboard_name}/ # Figure factories for this dashboard
|
||||
├── __init__.py
|
||||
└── ... # Chart modules
|
||||
```
|
||||
|
||||
### dbt Models (`dbt/models/`)
|
||||
|
||||
```
|
||||
dbt/models/
|
||||
├── staging/
|
||||
│ └── {dashboard_name}/ # Staging models
|
||||
│ ├── _sources.yml # Source definitions (schema: raw_{dashboard_name})
|
||||
│ ├── _staging.yml # Model tests/docs
|
||||
│ └── stg_*.sql # Staging models
|
||||
├── intermediate/
|
||||
│ └── {dashboard_name}/ # Intermediate models
|
||||
│ ├── _intermediate.yml
|
||||
│ └── int_*.sql
|
||||
└── marts/
|
||||
└── {dashboard_name}/ # Mart tables
|
||||
├── _marts.yml
|
||||
└── mart_*.sql
|
||||
```
|
||||
|
||||
### Documentation (`notebooks/`)
|
||||
|
||||
```
|
||||
notebooks/
|
||||
└── {dashboard_name}/ # Domain subdirectories
|
||||
├── overview/
|
||||
├── ...
|
||||
```
|
||||
|
||||
## Step-by-Step Checklist
|
||||
@@ -47,24 +81,55 @@ portfolio_app/
|
||||
- [ ] Create loaders in `{dashboard_name}/loaders/`
|
||||
- [ ] Add database migrations if needed
|
||||
|
||||
### 2. dbt Models
|
||||
### 2. Database Schema
|
||||
|
||||
- [ ] Define schema constant in models (e.g., `RAW_FOOTBALL_SCHEMA = "raw_football"`)
|
||||
- [ ] Add `__table_args__ = {"schema": RAW_FOOTBALL_SCHEMA}` to all models
|
||||
- [ ] Update `scripts/db/init_schema.py` to create the new schema
|
||||
|
||||
### 3. dbt Models
|
||||
|
||||
Create dbt models in `dbt/models/`:
|
||||
|
||||
- [ ] `staging/stg_{source}__{entity}.sql` - Raw data cleaning
|
||||
- [ ] `intermediate/int_{domain}__{transform}.sql` - Business logic
|
||||
- [ ] `marts/mart_{domain}.sql` - Final analytical tables
|
||||
- [ ] `staging/{dashboard_name}/_sources.yml` - Source definitions pointing to `raw_{dashboard_name}` schema
|
||||
- [ ] `staging/{dashboard_name}/stg_{source}__{entity}.sql` - Raw data cleaning
|
||||
- [ ] `intermediate/{dashboard_name}/int_{domain}__{transform}.sql` - Business logic
|
||||
- [ ] `marts/{dashboard_name}/mart_{domain}.sql` - Final analytical tables
|
||||
|
||||
Update `dbt/dbt_project.yml` with new subdirectory config:
|
||||
```yaml
|
||||
models:
|
||||
portfolio:
|
||||
staging:
|
||||
{dashboard_name}:
|
||||
+materialized: view
|
||||
+schema: stg_{dashboard_name}
|
||||
intermediate:
|
||||
{dashboard_name}:
|
||||
+materialized: view
|
||||
+schema: int_{dashboard_name}
|
||||
marts:
|
||||
{dashboard_name}:
|
||||
+materialized: table
|
||||
+schema: mart_{dashboard_name}
|
||||
```
|
||||
|
||||
Follow naming conventions:
|
||||
- Staging: `stg_{source}__{entity}`
|
||||
- Intermediate: `int_{domain}__{transform}`
|
||||
- Marts: `mart_{domain}`
|
||||
|
||||
### 3. Visualization Layer
|
||||
### 4. Visualization Layer
|
||||
|
||||
- [ ] Create figure factories in `figures/` (or reuse existing)
|
||||
- [ ] Create figure factories in `figures/{dashboard_name}/`
|
||||
- [ ] Create `figures/{dashboard_name}/__init__.py` with exports
|
||||
- [ ] Follow the factory pattern: `create_{chart_type}_figure(data, **kwargs)`
|
||||
|
||||
Import pattern:
|
||||
```python
|
||||
from portfolio_app.figures.{dashboard_name} import create_choropleth_figure
|
||||
```
|
||||
|
||||
### 4. Dashboard Pages
|
||||
|
||||
#### Main Dashboard (`pages/{dashboard_name}/dashboard.py`)
|
||||
|
||||
@@ -1,17 +1,18 @@
|
||||
# Toronto Neighbourhood Dashboard - Notebooks
|
||||
# Dashboard Documentation Notebooks
|
||||
|
||||
Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
|
||||
Documentation notebooks organized by dashboard project. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
|
||||
|
||||
## Directory Structure
|
||||
|
||||
```
|
||||
notebooks/
|
||||
├── README.md # This file
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
└── toronto/ # Toronto Neighbourhood Dashboard
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
```
|
||||
|
||||
## Notebook Template
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Radar Chart\n",
|
||||
"\n",
|
||||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ['DATABASE_URL'])\n\nquery = \"\"\"\nSELECT\n neighbourhood_name,\n parks_index,\n schools_index,\n transit_index,\n amenity_index,\n amenity_tier\nFROM public_marts.mart_neighbourhood_amenities\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\nORDER BY amenity_index DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||||
"2. Reshape for radar chart format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Select representative neighbourhoods\n",
|
||||
"top_5 = df.head(5)\n",
|
||||
"bottom_5 = df.tail(5)\n",
|
||||
"\n",
|
||||
"# Prepare radar data\n",
|
||||
"categories = ['Parks', 'Schools', 'Transit']\n",
|
||||
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||||
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
|
||||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||||
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_radar` from `portfolio_app.figures.radar`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import sys\nsys.path.insert(0, '../..')\n\nfrom portfolio_app.figures.radar import create_comparison_radar\n\n# Compare top neighbourhood vs city average (100)\ntop_hood = top_5.iloc[0]\nmetrics = ['parks_index', 'schools_index', 'transit_index']\n\nfig = create_comparison_radar(\n selected_data=top_hood.to_dict(),\n average_data={'parks_index': 100, 'schools_index': 100, 'transit_index': 100},\n metrics=metrics,\n selected_name=top_hood['neighbourhood_name'],\n average_name='City Average',\n title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n)\n\nfig.show()"
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Value | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | Below city average |\n",
|
||||
"| = 100 | City average |\n",
|
||||
"| > 100 | Above city average |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -79,17 +80,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'total_amenities_per_1000', 'amenity_index', 'amenity_tier']].head(10)"
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"total_amenities_per_1000\", \"amenity_index\", \"amenity_tier\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,18 +128,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='total_amenities_per_1000',\n",
|
||||
" hover_data=['neighbourhood_name', 'amenity_index', 'parks_per_1000', 'schools_per_1000'],\n",
|
||||
" color_scale='Greens',\n",
|
||||
" title='Toronto Amenities per 1,000 Population',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"total_amenities_per_1000\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" \"parks_per_1000\",\n",
|
||||
" \"schools_per_1000\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"Greens\",\n",
|
||||
" title=\"Toronto Amenities per 1,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
@@ -0,0 +1,191 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Radar Chart\n",
|
||||
"\n",
|
||||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" parks_index,\n",
|
||||
" schools_index,\n",
|
||||
" transit_index,\n",
|
||||
" amenity_index,\n",
|
||||
" amenity_tier\n",
|
||||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||||
"ORDER BY amenity_index DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||||
"2. Reshape for radar chart format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Select representative neighbourhoods\n",
|
||||
"top_5 = df.head(5)\n",
|
||||
"bottom_5 = df.tail(5)\n",
|
||||
"\n",
|
||||
"# Prepare radar data\n",
|
||||
"categories = [\"Parks\", \"Schools\", \"Transit\"]\n",
|
||||
"index_columns = [\"parks_index\", \"schools_index\", \"transit_index\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" top_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" bottom_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_radar` from `portfolio_app.figures.toronto.radar`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.radar import create_comparison_radar\n",
|
||||
"\n",
|
||||
"# Compare top neighbourhood vs city average (100)\n",
|
||||
"top_hood = top_5.iloc[0]\n",
|
||||
"metrics = [\"parks_index\", \"schools_index\", \"transit_index\"]\n",
|
||||
"\n",
|
||||
"fig = create_comparison_radar(\n",
|
||||
" selected_data=top_hood.to_dict(),\n",
|
||||
" average_data={\"parks_index\": 100, \"schools_index\": 100, \"transit_index\": 100},\n",
|
||||
" metrics=metrics,\n",
|
||||
" selected_name=top_hood[\"neighbourhood_name\"],\n",
|
||||
" average_name=\"City Average\",\n",
|
||||
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Value | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | Below city average |\n",
|
||||
"| = 100 | City average |\n",
|
||||
"| > 100 | Above city average |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood \u00d7 year | transit_per_1000, transit_index, transit_count |\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | transit_per_1000, transit_index, transit_count |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -74,7 +75,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict('records')"
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +91,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'transit_per_1000', 'transit_index', 'transit_count']].head(10)"
|
||||
"df[[\"neighbourhood_name\", \"transit_per_1000\", \"transit_index\", \"transit_count\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -101,7 +104,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -111,17 +114,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='transit_per_1000',\n",
|
||||
" title='Top 20 Neighbourhoods by Transit Accessibility',\n",
|
||||
" color='#00BCD4',\n",
|
||||
" value_format='.2f',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"transit_per_1000\",\n",
|
||||
" title=\"Top 20 Neighbourhoods by Transit Accessibility\",\n",
|
||||
" color=\"#00BCD4\",\n",
|
||||
" value_format=\".2f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -140,7 +144,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(f\"City-wide Transit Statistics:\")\n",
|
||||
"print(\"City-wide Transit Statistics:\")\n",
|
||||
"print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n",
|
||||
"print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n",
|
||||
"print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | median_age, age_index, city_avg_age |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,13 +77,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"city_avg = df['city_avg_age'].iloc[0]\n",
|
||||
"df['age_category'] = df['median_age'].apply(\n",
|
||||
" lambda x: 'Younger' if x < city_avg else 'Older'\n",
|
||||
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
|
||||
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
|
||||
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
|
||||
")\n",
|
||||
"df['age_deviation'] = df['median_age'] - city_avg\n",
|
||||
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
|
||||
"\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -100,9 +101,13 @@
|
||||
"source": [
|
||||
"print(f\"City Average Age: {city_avg:.1f}\")\n",
|
||||
"print(\"\\nYoungest Neighbourhoods:\")\n",
|
||||
"display(df.tail(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])\n",
|
||||
"display(\n",
|
||||
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")\n",
|
||||
"print(\"\\nOldest Neighbourhoods:\")\n",
|
||||
"display(df.head(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])"
|
||||
"display(\n",
|
||||
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -113,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -123,20 +128,21 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='median_age',\n",
|
||||
" title='Youngest & Oldest Neighbourhoods (Median Age)',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"median_age\",\n",
|
||||
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top='#FF9800', # Orange for older\n",
|
||||
" color_bottom='#2196F3', # Blue for younger\n",
|
||||
" value_format='.1f',\n",
|
||||
" color_top=\"#FF9800\", # Orange for older\n",
|
||||
" color_bottom=\"#2196F3\", # Blue for younger\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -157,7 +163,7 @@
|
||||
"source": [
|
||||
"# Age by income quintile\n",
|
||||
"print(\"Median Age by Income Quintile:\")\n",
|
||||
"df.groupby('income_quintile')['median_age'].mean().round(1)"
|
||||
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | median_household_income, income_index, income_quintile, geometry |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,19 +78,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'median_household_income', 'income_index', 'income_quintile']].head(10)"
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +118,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,18 +128,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='median_household_income',\n",
|
||||
" hover_data=['neighbourhood_name', 'income_index', 'income_quintile'],\n",
|
||||
" color_scale='Viridis',\n",
|
||||
" title='Toronto Median Household Income by Neighbourhood',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"median_household_income\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n",
|
||||
" color_scale=\"Viridis\",\n",
|
||||
" title=\"Toronto Median Household Income by Neighbourhood\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -157,7 +160,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.groupby('income_quintile')['median_household_income'].agg(['count', 'mean', 'min', 'max']).round(0)"
|
||||
"df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n",
|
||||
" [\"count\", \"mean\", \"min\", \"max\"]\n",
|
||||
").round(0)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood \u00d7 year | population_density, population, land_area_sqkm |\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | population_density, population, land_area_sqkm |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -74,7 +75,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict('records')"
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +91,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'population_density', 'population', 'land_area_sqkm']].head(10)"
|
||||
"df[[\"neighbourhood_name\", \"population_density\", \"population\", \"land_area_sqkm\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -101,7 +104,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -111,17 +114,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='population_density',\n",
|
||||
" title='Top 20 Most Dense Neighbourhoods',\n",
|
||||
" color='#9C27B0',\n",
|
||||
" value_format=',.0f',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"population_density\",\n",
|
||||
" title=\"Top 20 Most Dense Neighbourhoods\",\n",
|
||||
" color=\"#9C27B0\",\n",
|
||||
" value_format=\",.0f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -140,7 +144,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(f\"City-wide Statistics:\")\n",
|
||||
"print(\"City-wide Statistics:\")\n",
|
||||
"print(f\" Total Population: {df['population'].sum():,.0f}\")\n",
|
||||
"print(f\" Total Area: {df['land_area_sqkm'].sum():,.1f} sq km\")\n",
|
||||
"print(f\" Average Density: {df['population_density'].mean():,.0f} per sq km\")\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,17 +78,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,7 +103,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'affordability_index', 'rent_to_income_pct', 'avg_rent_2bed', 'is_affordable']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"affordability_index\",\n",
|
||||
" \"rent_to_income_pct\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"is_affordable\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +122,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'affordability_index'\n",
|
||||
@@ -128,18 +136,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='affordability_index',\n",
|
||||
" hover_data=['neighbourhood_name', 'rent_to_income_pct', 'avg_rent_2bed'],\n",
|
||||
" color_scale='RdYlGn_r', # Reversed: lower index (affordable) = green\n",
|
||||
" title='Toronto Housing Affordability Index',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"affordability_index\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"rent_to_income_pct\", \"avg_rent_2bed\"],\n",
|
||||
" color_scale=\"RdYlGn_r\", # Reversed: lower index (affordable) = green\n",
|
||||
" title=\"Toronto Housing Affordability Index\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"# City-wide average rent by year\n",
|
||||
"query = \"\"\"\n",
|
||||
@@ -77,23 +78,25 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create date column from year\n",
|
||||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line chart\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['year', 'date'],\n",
|
||||
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
|
||||
" var_name='bedroom_type',\n",
|
||||
" value_name='avg_rent'\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_rent_bachelor\", \"avg_rent_1bed\", \"avg_rent_2bed\", \"avg_rent_3bed\"],\n",
|
||||
" var_name=\"bedroom_type\",\n",
|
||||
" value_name=\"avg_rent\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
|
||||
" 'avg_rent_bachelor': 'Bachelor',\n",
|
||||
" 'avg_rent_1bed': '1 Bedroom',\n",
|
||||
" 'avg_rent_2bed': '2 Bedroom',\n",
|
||||
" 'avg_rent_3bed': '3 Bedroom'\n",
|
||||
"})"
|
||||
"df_melted[\"bedroom_type\"] = df_melted[\"bedroom_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_rent_bachelor\": \"Bachelor\",\n",
|
||||
" \"avg_rent_1bed\": \"1 Bedroom\",\n",
|
||||
" \"avg_rent_2bed\": \"2 Bedroom\",\n",
|
||||
" \"avg_rent_3bed\": \"3 Bedroom\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -109,7 +112,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"year\",\n",
|
||||
" \"avg_rent_bachelor\",\n",
|
||||
" \"avg_rent_1bed\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"avg_rent_3bed\",\n",
|
||||
" \"avg_yoy_change\",\n",
|
||||
" ]\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -120,7 +132,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
|
||||
"Uses `create_price_time_series` from `portfolio_app.figures.toronto.time_series`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `date_column`: 'date'\n",
|
||||
@@ -135,18 +147,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='avg_rent',\n",
|
||||
" group_column='bedroom_type',\n",
|
||||
" title='Toronto Average Rent Trend (5 Years)',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"avg_rent\",\n",
|
||||
" group_column=\"bedroom_type\",\n",
|
||||
" title=\"Toronto Average Rent Trend (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
@@ -167,7 +180,7 @@
|
||||
"source": [
|
||||
"# Show year-over-year changes\n",
|
||||
"print(\"Year-over-Year Rent Change (%)\")\n",
|
||||
"df[['year', 'avg_yoy_change']].dropna()"
|
||||
"df[[\"year\", \"avg_yoy_change\"]].dropna()"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,18 +78,17 @@
|
||||
"source": [
|
||||
"# Prepare for stacked bar\n",
|
||||
"df_stacked = df.melt(\n",
|
||||
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
|
||||
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
|
||||
" var_name='tenure_type',\n",
|
||||
" value_name='percentage'\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"income_quintile\"],\n",
|
||||
" value_vars=[\"pct_owner_occupied\", \"pct_renter_occupied\"],\n",
|
||||
" var_name=\"tenure_type\",\n",
|
||||
" value_name=\"percentage\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
|
||||
" 'pct_owner_occupied': 'Owner',\n",
|
||||
" 'pct_renter_occupied': 'Renter'\n",
|
||||
"})\n",
|
||||
"df_stacked[\"tenure_type\"] = df_stacked[\"tenure_type\"].map(\n",
|
||||
" {\"pct_owner_occupied\": \"Owner\", \"pct_renter_occupied\": \"Renter\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_stacked.to_dict('records')"
|
||||
"data = df_stacked.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +105,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Highest Renter Neighbourhoods:\")\n",
|
||||
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"pct_renter_occupied\",\n",
|
||||
" \"pct_owner_occupied\",\n",
|
||||
" \"income_quintile\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +123,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'neighbourhood_name'\n",
|
||||
@@ -132,21 +139,22 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"# Show top 20 by renter percentage\n",
|
||||
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
|
||||
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
|
||||
"top_20_names = df.head(20)[\"neighbourhood_name\"].tolist()\n",
|
||||
"data_filtered = [d for d in data if d[\"neighbourhood_name\"] in top_20_names]\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data_filtered,\n",
|
||||
" x_column='neighbourhood_name',\n",
|
||||
" value_column='percentage',\n",
|
||||
" category_column='tenure_type',\n",
|
||||
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
|
||||
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"percentage\",\n",
|
||||
" category_column=\"tenure_type\",\n",
|
||||
" title=\"Housing Tenure Mix - Top 20 Renter Neighbourhoods\",\n",
|
||||
" color_map={\"Owner\": \"#4CAF50\", \"Renter\": \"#2196F3\"},\n",
|
||||
" show_percentages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -172,7 +180,9 @@
|
||||
"\n",
|
||||
"# By income quintile\n",
|
||||
"print(\"\\nTenure by Income Quintile:\")\n",
|
||||
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
|
||||
"df.groupby(\"income_quintile\")[\n",
|
||||
" [\"pct_owner_occupied\", \"pct_renter_occupied\"]\n",
|
||||
"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood \u00d7 year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,10 +78,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Scale income to thousands for better axis readability\n",
|
||||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -96,7 +97,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'median_household_income', 'safety_score', 'crime_rate_per_100k']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"median_household_income\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -107,7 +115,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_scatter_figure` from `portfolio_app.figures.scatter`.\n",
|
||||
"Uses `create_scatter_figure` from `portfolio_app.figures.toronto.scatter`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'income_thousands' (median household income in $K)\n",
|
||||
@@ -124,19 +132,20 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.scatter import create_scatter_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.scatter import create_scatter_figure\n",
|
||||
"\n",
|
||||
"fig = create_scatter_figure(\n",
|
||||
" data=data,\n",
|
||||
" x_column='income_thousands',\n",
|
||||
" y_column='safety_score',\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" size_column='population',\n",
|
||||
" title='Income vs Safety by Neighbourhood',\n",
|
||||
" x_title='Median Household Income ($K)',\n",
|
||||
" y_title='Safety Score (0-100)',\n",
|
||||
" x_column=\"income_thousands\",\n",
|
||||
" y_column=\"safety_score\",\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" size_column=\"population\",\n",
|
||||
" title=\"Income vs Safety by Neighbourhood\",\n",
|
||||
" x_title=\"Median Household Income ($K)\",\n",
|
||||
" y_title=\"Safety Score (0-100)\",\n",
|
||||
" trendline=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -166,7 +175,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Calculate correlation coefficient\n",
|
||||
"correlation = df['median_household_income'].corr(df['safety_score'])\n",
|
||||
"correlation = df[\"median_household_income\"].corr(df[\"safety_score\"])\n",
|
||||
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
|
||||
]
|
||||
}
|
||||
@@ -29,7 +29,38 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "import pandas as pd\nfrom sqlalchemy import create_engine\nfrom dotenv import load_dotenv\nimport os\n\n# Load .env from project root\nload_dotenv('../../.env')\n\nengine = create_engine(os.environ['DATABASE_URL'])\n\nquery = \"\"\"\nSELECT\n neighbourhood_id,\n neighbourhood_name,\n geometry,\n year,\n livability_score,\n safety_score,\n affordability_score,\n amenity_score,\n population,\n median_household_income\nFROM public_marts.mart_neighbourhood_overview\nWHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\nORDER BY livability_score DESC\n\"\"\"\n\ndf = pd.read_sql(query, engine)\nprint(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" livability_score,\n",
|
||||
" safety_score,\n",
|
||||
" affordability_score,\n",
|
||||
" amenity_score,\n",
|
||||
" population,\n",
|
||||
" median_household_income\n",
|
||||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||||
"ORDER BY livability_score DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -49,21 +80,20 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Transform geometry to GeoJSON\n",
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"# Convert WKB geometry to GeoDataFrame\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Create GeoJSON FeatureCollection\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -79,7 +109,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'livability_score', 'safety_score', 'affordability_score', 'amenity_score']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"livability_score\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +128,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
|
||||
@@ -107,18 +145,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='livability_score',\n",
|
||||
" hover_data=['neighbourhood_name', 'safety_score', 'affordability_score', 'amenity_score'],\n",
|
||||
" color_scale='RdYlGn',\n",
|
||||
" title='Toronto Neighbourhood Livability Score',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"livability_score\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"RdYlGn\",\n",
|
||||
" title=\"Toronto Neighbourhood Livability Score\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood \u00d7 year | neighbourhood_name, livability_score |\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,7 +77,7 @@
|
||||
"source": [
|
||||
"# The figure factory handles top/bottom selection internally\n",
|
||||
"# Just prepare as list of dicts\n",
|
||||
"data = df.to_dict('records')"
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -106,7 +107,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `data`: List of dicts with all neighbourhoods\n",
|
||||
@@ -123,20 +124,21 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column='neighbourhood_name',\n",
|
||||
" value_column='livability_score',\n",
|
||||
" title='Top & Bottom 10 Neighbourhoods by Livability',\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"livability_score\",\n",
|
||||
" title=\"Top & Bottom 10 Neighbourhoods by Livability\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top='#4CAF50', # Green for top performers\n",
|
||||
" color_bottom='#F44336', # Red for bottom performers\n",
|
||||
" value_format='.1f',\n",
|
||||
" color_top=\"#4CAF50\", # Green for top performers\n",
|
||||
" color_bottom=\"#F44336\", # Red for bottom performers\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
0
notebooks/toronto/safety/.gitkeep
Normal file
0
notebooks/toronto/safety/.gitkeep
Normal file
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -79,17 +80,25 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['neighbourhood_name', 'total_incidents'],\n",
|
||||
" value_vars=['assault_count', 'auto_theft_count', 'break_enter_count', \n",
|
||||
" 'robbery_count', 'theft_over_count', 'homicide_count'],\n",
|
||||
" var_name='crime_type',\n",
|
||||
" value_name='count'\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n",
|
||||
" value_vars=[\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"robbery_count\",\n",
|
||||
" \"theft_over_count\",\n",
|
||||
" \"homicide_count\",\n",
|
||||
" ],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"count\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted['crime_type'] = df_melted['crime_type'].str.replace('_count', '').str.replace('_', ' ').str.title()\n",
|
||||
"df_melted[\"crime_type\"] = (\n",
|
||||
" df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')"
|
||||
"data = df_melted.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -105,7 +114,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'assault_count', 'auto_theft_count', 'break_enter_count', 'total_incidents']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -116,7 +133,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`."
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -126,23 +143,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data,\n",
|
||||
" x_column='neighbourhood_name',\n",
|
||||
" value_column='count',\n",
|
||||
" category_column='crime_type',\n",
|
||||
" title='Crime Type Breakdown - Top 15 Neighbourhoods',\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"count\",\n",
|
||||
" category_column=\"crime_type\",\n",
|
||||
" title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n",
|
||||
" color_map={\n",
|
||||
" 'Assault': '#d62728',\n",
|
||||
" 'Auto Theft': '#ff7f0e',\n",
|
||||
" 'Break Enter': '#9467bd',\n",
|
||||
" 'Robbery': '#8c564b',\n",
|
||||
" 'Theft Over': '#e377c2',\n",
|
||||
" 'Homicide': '#1f77b4'\n",
|
||||
" \"Assault\": \"#d62728\",\n",
|
||||
" \"Auto Theft\": \"#ff7f0e\",\n",
|
||||
" \"Break Enter\": \"#9467bd\",\n",
|
||||
" \"Robbery\": \"#8c564b\",\n",
|
||||
" \"Theft Over\": \"#e377c2\",\n",
|
||||
" \"Homicide\": \"#1f77b4\",\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -77,17 +78,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import geopandas as gpd\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df,\n",
|
||||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||||
" crs='EPSG:4326'\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,7 +103,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['neighbourhood_name', 'crime_rate_per_100k', 'crime_index', 'safety_tier', 'total_incidents']].head(10)"
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" \"crime_index\",\n",
|
||||
" \"safety_tier\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +122,7 @@
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'crime_rate_per_100k'\n",
|
||||
@@ -128,18 +136,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key='neighbourhood_id',\n",
|
||||
" color_column='crime_rate_per_100k',\n",
|
||||
" hover_data=['neighbourhood_name', 'crime_index', 'total_incidents'],\n",
|
||||
" color_scale='RdYlGn_r',\n",
|
||||
" title='Toronto Crime Rate per 100,000 Population',\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"crime_rate_per_100k\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"crime_index\", \"total_incidents\"],\n",
|
||||
" color_scale=\"RdYlGn_r\",\n",
|
||||
" title=\"Toronto Crime Rate per 100,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
@@ -19,7 +19,7 @@
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood \u00d7 year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
@@ -30,15 +30,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv('../../.env')\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
@@ -76,21 +77,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=['year', 'date'],\n",
|
||||
" value_vars=['avg_assault_rate', 'avg_auto_theft_rate', 'avg_break_enter_rate'],\n",
|
||||
" var_name='crime_type',\n",
|
||||
" value_name='rate_per_100k'\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_assault_rate\", \"avg_auto_theft_rate\", \"avg_break_enter_rate\"],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"rate_per_100k\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_melted['crime_type'] = df_melted['crime_type'].map({\n",
|
||||
" 'avg_assault_rate': 'Assault',\n",
|
||||
" 'avg_auto_theft_rate': 'Auto Theft',\n",
|
||||
" 'avg_break_enter_rate': 'Break & Enter'\n",
|
||||
"})"
|
||||
"df_melted[\"crime_type\"] = df_melted[\"crime_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_assault_rate\": \"Assault\",\n",
|
||||
" \"avg_auto_theft_rate\": \"Auto Theft\",\n",
|
||||
" \"avg_break_enter_rate\": \"Break & Enter\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -106,7 +109,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[['year', 'avg_crime_rate', 'total_city_incidents', 'avg_yoy_change']]"
|
||||
"df[[\"year\", \"avg_crime_rate\", \"total_city_incidents\", \"avg_yoy_change\"]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -127,22 +130,23 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path.insert(0, '../..')\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict('records')\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='rate_per_100k',\n",
|
||||
" group_column='crime_type',\n",
|
||||
" title='Toronto Crime Trends by Type (5 Years)',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"rate_per_100k\",\n",
|
||||
" group_column=\"crime_type\",\n",
|
||||
" title=\"Toronto Crime Trends by Type (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Remove dollar sign formatting since this is rate data\n",
|
||||
"fig.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||||
"fig.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
@@ -161,15 +165,19 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Total crime rate trend\n",
|
||||
"total_data = df[['date', 'avg_crime_rate']].rename(columns={'avg_crime_rate': 'total_rate'}).to_dict('records')\n",
|
||||
"total_data = (\n",
|
||||
" df[[\"date\", \"avg_crime_rate\"]]\n",
|
||||
" .rename(columns={\"avg_crime_rate\": \"total_rate\"})\n",
|
||||
" .to_dict(\"records\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig2 = create_price_time_series(\n",
|
||||
" data=total_data,\n",
|
||||
" date_column='date',\n",
|
||||
" price_column='total_rate',\n",
|
||||
" title='Toronto Overall Crime Rate Trend',\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"total_rate\",\n",
|
||||
" title=\"Toronto Overall Crime Rate Trend\",\n",
|
||||
")\n",
|
||||
"fig2.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||||
"fig2.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"fig2.show()"
|
||||
]
|
||||
}
|
||||
@@ -28,7 +28,7 @@ def create_metric_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=default_value or (options[0]["value"] if options else None),
|
||||
style={"width": "200px"},
|
||||
w=200,
|
||||
)
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ def create_map_controls(
|
||||
id=f"{id_prefix}-layer-toggle",
|
||||
label="Show Boundaries",
|
||||
checked=True,
|
||||
style={"marginTop": "10px"},
|
||||
mt="sm",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ from typing import Any
|
||||
import dash_mantine_components as dmc
|
||||
from dash import dcc
|
||||
|
||||
from portfolio_app.figures.summary_cards import create_metric_card_figure
|
||||
from portfolio_app.figures.toronto.summary_cards import create_metric_card_figure
|
||||
|
||||
|
||||
class MetricCard:
|
||||
|
||||
@@ -38,7 +38,7 @@ def create_year_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_year),
|
||||
style={"width": "120px"},
|
||||
w=120,
|
||||
)
|
||||
|
||||
|
||||
@@ -83,7 +83,8 @@ def create_time_slider(
|
||||
marks=marks,
|
||||
step=1,
|
||||
minRange=1,
|
||||
style={"marginTop": "20px", "marginBottom": "10px"},
|
||||
mt="md",
|
||||
mb="sm",
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
@@ -131,5 +132,5 @@ def create_month_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_month),
|
||||
style={"width": "140px"},
|
||||
w=140,
|
||||
)
|
||||
|
||||
48
portfolio_app/design/__init__.py
Normal file
48
portfolio_app/design/__init__.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""Design system tokens and utilities."""
|
||||
|
||||
from .tokens import (
|
||||
CHART_PALETTE,
|
||||
COLOR_ACCENT,
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
COLOR_WARNING,
|
||||
GRID_COLOR,
|
||||
GRID_COLOR_DARK,
|
||||
PALETTE_COMPARISON,
|
||||
PALETTE_GENDER,
|
||||
PALETTE_TREND,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
POLICY_COLORS,
|
||||
TEXT_MUTED,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
get_colorbar_defaults,
|
||||
get_default_layout,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Text colors
|
||||
"TEXT_PRIMARY",
|
||||
"TEXT_SECONDARY",
|
||||
"TEXT_MUTED",
|
||||
# Chart backgrounds
|
||||
"GRID_COLOR",
|
||||
"GRID_COLOR_DARK",
|
||||
"PAPER_BG",
|
||||
"PLOT_BG",
|
||||
# Semantic colors
|
||||
"COLOR_POSITIVE",
|
||||
"COLOR_NEGATIVE",
|
||||
"COLOR_WARNING",
|
||||
"COLOR_ACCENT",
|
||||
# Palettes
|
||||
"CHART_PALETTE",
|
||||
"PALETTE_COMPARISON",
|
||||
"PALETTE_GENDER",
|
||||
"PALETTE_TREND",
|
||||
"POLICY_COLORS",
|
||||
# Utility functions
|
||||
"get_default_layout",
|
||||
"get_colorbar_defaults",
|
||||
]
|
||||
162
portfolio_app/design/tokens.py
Normal file
162
portfolio_app/design/tokens.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""Centralized design tokens for consistent styling across the application.
|
||||
|
||||
This module provides a single source of truth for colors, ensuring:
|
||||
- Consistent styling across all Plotly figures and components
|
||||
- Accessibility compliance (WCAG color contrast)
|
||||
- Easy theme updates without hunting through multiple files
|
||||
|
||||
Usage:
|
||||
from portfolio_app.design import TEXT_PRIMARY, CHART_PALETTE
|
||||
fig.update_layout(font_color=TEXT_PRIMARY)
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
# =============================================================================
|
||||
# TEXT COLORS (Dark Theme)
|
||||
# =============================================================================
|
||||
|
||||
TEXT_PRIMARY = "#c9c9c9"
|
||||
"""Primary text color for labels, titles, and body text."""
|
||||
|
||||
TEXT_SECONDARY = "#888888"
|
||||
"""Secondary text color for subtitles, captions, and muted text."""
|
||||
|
||||
TEXT_MUTED = "#666666"
|
||||
"""Muted text color for disabled states and placeholders."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# CHART BACKGROUND & GRID
|
||||
# =============================================================================
|
||||
|
||||
GRID_COLOR = "rgba(128, 128, 128, 0.2)"
|
||||
"""Standard grid line color with transparency."""
|
||||
|
||||
GRID_COLOR_DARK = "rgba(128, 128, 128, 0.3)"
|
||||
"""Darker grid for radar charts and polar plots."""
|
||||
|
||||
PAPER_BG = "rgba(0, 0, 0, 0)"
|
||||
"""Transparent paper background for charts."""
|
||||
|
||||
PLOT_BG = "rgba(0, 0, 0, 0)"
|
||||
"""Transparent plot background for charts."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# SEMANTIC COLORS
|
||||
# =============================================================================
|
||||
|
||||
COLOR_POSITIVE = "#40c057"
|
||||
"""Positive/success indicator (Mantine green-6)."""
|
||||
|
||||
COLOR_NEGATIVE = "#fa5252"
|
||||
"""Negative/error indicator (Mantine red-6)."""
|
||||
|
||||
COLOR_WARNING = "#fab005"
|
||||
"""Warning indicator (Mantine yellow-6)."""
|
||||
|
||||
COLOR_ACCENT = "#228be6"
|
||||
"""Primary accent color (Mantine blue-6)."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# ACCESSIBLE CHART PALETTE
|
||||
# =============================================================================
|
||||
|
||||
# Okabe-Ito palette - optimized for all color vision deficiencies
|
||||
# Reference: https://jfly.uni-koeln.de/color/
|
||||
CHART_PALETTE = [
|
||||
"#0072B2", # Blue (primary data series)
|
||||
"#E69F00", # Orange
|
||||
"#56B4E9", # Sky blue
|
||||
"#009E73", # Teal/green
|
||||
"#F0E442", # Yellow
|
||||
"#D55E00", # Vermillion
|
||||
"#CC79A7", # Pink
|
||||
"#000000", # Black (use sparingly)
|
||||
]
|
||||
"""
|
||||
Accessible categorical palette (Okabe-Ito).
|
||||
|
||||
Distinguishable for deuteranopia, protanopia, and tritanopia.
|
||||
Use indices 0-6 for most charts; index 7 (black) for emphasis only.
|
||||
"""
|
||||
|
||||
# Semantic subsets for specific use cases
|
||||
PALETTE_COMPARISON = [CHART_PALETTE[0], CHART_PALETTE[1]]
|
||||
"""Two-color palette for A/B comparisons."""
|
||||
|
||||
PALETTE_GENDER = {
|
||||
"male": "#56B4E9", # Sky blue
|
||||
"female": "#CC79A7", # Pink
|
||||
}
|
||||
"""Gender-specific colors (accessible contrast)."""
|
||||
|
||||
PALETTE_TREND = {
|
||||
"positive": COLOR_POSITIVE,
|
||||
"negative": COLOR_NEGATIVE,
|
||||
"neutral": TEXT_SECONDARY,
|
||||
}
|
||||
"""Trend indicator colors for sparklines and deltas."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# POLICY/EVENT MARKERS (Time Series)
|
||||
# =============================================================================
|
||||
|
||||
POLICY_COLORS = {
|
||||
"policy_change": "#E69F00", # Orange - policy changes
|
||||
"major_event": "#D55E00", # Vermillion - major events
|
||||
"data_note": "#56B4E9", # Sky blue - data annotations
|
||||
"forecast": "#009E73", # Teal - forecast periods
|
||||
"highlight": "#F0E442", # Yellow - highlighted regions
|
||||
}
|
||||
"""Colors for policy markers and event annotations on time series."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# CHART LAYOUT DEFAULTS
|
||||
# =============================================================================
|
||||
|
||||
|
||||
def get_default_layout() -> dict[str, Any]:
|
||||
"""Return default Plotly layout settings with design tokens.
|
||||
|
||||
Returns:
|
||||
dict: Layout configuration for fig.update_layout()
|
||||
|
||||
Example:
|
||||
fig.update_layout(**get_default_layout())
|
||||
"""
|
||||
return {
|
||||
"paper_bgcolor": PAPER_BG,
|
||||
"plot_bgcolor": PLOT_BG,
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
"legend": {"font": {"color": TEXT_PRIMARY}},
|
||||
"xaxis": {
|
||||
"gridcolor": GRID_COLOR,
|
||||
"linecolor": GRID_COLOR,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
},
|
||||
"yaxis": {
|
||||
"gridcolor": GRID_COLOR,
|
||||
"linecolor": GRID_COLOR,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_colorbar_defaults() -> dict[str, Any]:
|
||||
"""Return default colorbar settings with design tokens.
|
||||
|
||||
Returns:
|
||||
dict: Colorbar configuration for choropleth/heatmap traces
|
||||
"""
|
||||
return {
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
}
|
||||
@@ -1,61 +1,15 @@
|
||||
"""Plotly figure factories for data visualization."""
|
||||
"""Plotly figure factories for data visualization.
|
||||
|
||||
from .bar_charts import (
|
||||
create_horizontal_bar,
|
||||
create_ranking_bar,
|
||||
create_stacked_bar,
|
||||
)
|
||||
from .choropleth import (
|
||||
create_choropleth_figure,
|
||||
create_zone_map,
|
||||
)
|
||||
from .demographics import (
|
||||
create_age_pyramid,
|
||||
create_donut_chart,
|
||||
create_income_distribution,
|
||||
)
|
||||
from .radar import (
|
||||
create_comparison_radar,
|
||||
create_radar_figure,
|
||||
)
|
||||
from .scatter import (
|
||||
create_bubble_chart,
|
||||
create_scatter_figure,
|
||||
)
|
||||
from .summary_cards import create_metric_card_figure, create_summary_metrics
|
||||
from .time_series import (
|
||||
add_policy_markers,
|
||||
create_market_comparison_chart,
|
||||
create_price_time_series,
|
||||
create_time_series_with_events,
|
||||
create_volume_time_series,
|
||||
)
|
||||
Figure factories are organized by dashboard domain:
|
||||
- toronto/ : Toronto Neighbourhood Dashboard figures
|
||||
|
||||
Usage:
|
||||
from portfolio_app.figures.toronto import create_choropleth_figure
|
||||
from portfolio_app.figures.toronto import create_ranking_bar
|
||||
"""
|
||||
|
||||
from . import toronto
|
||||
|
||||
__all__ = [
|
||||
# Choropleth
|
||||
"create_choropleth_figure",
|
||||
"create_zone_map",
|
||||
# Time series
|
||||
"create_price_time_series",
|
||||
"create_volume_time_series",
|
||||
"create_market_comparison_chart",
|
||||
"create_time_series_with_events",
|
||||
"add_policy_markers",
|
||||
# Summary
|
||||
"create_metric_card_figure",
|
||||
"create_summary_metrics",
|
||||
# Bar charts
|
||||
"create_ranking_bar",
|
||||
"create_stacked_bar",
|
||||
"create_horizontal_bar",
|
||||
# Scatter plots
|
||||
"create_scatter_figure",
|
||||
"create_bubble_chart",
|
||||
# Radar charts
|
||||
"create_radar_figure",
|
||||
"create_comparison_radar",
|
||||
# Demographics
|
||||
"create_age_pyramid",
|
||||
"create_donut_chart",
|
||||
"create_income_distribution",
|
||||
"toronto",
|
||||
]
|
||||
|
||||
61
portfolio_app/figures/toronto/__init__.py
Normal file
61
portfolio_app/figures/toronto/__init__.py
Normal file
@@ -0,0 +1,61 @@
|
||||
"""Plotly figure factories for Toronto dashboard visualizations."""
|
||||
|
||||
from .bar_charts import (
|
||||
create_horizontal_bar,
|
||||
create_ranking_bar,
|
||||
create_stacked_bar,
|
||||
)
|
||||
from .choropleth import (
|
||||
create_choropleth_figure,
|
||||
create_zone_map,
|
||||
)
|
||||
from .demographics import (
|
||||
create_age_pyramid,
|
||||
create_donut_chart,
|
||||
create_income_distribution,
|
||||
)
|
||||
from .radar import (
|
||||
create_comparison_radar,
|
||||
create_radar_figure,
|
||||
)
|
||||
from .scatter import (
|
||||
create_bubble_chart,
|
||||
create_scatter_figure,
|
||||
)
|
||||
from .summary_cards import create_metric_card_figure, create_summary_metrics
|
||||
from .time_series import (
|
||||
add_policy_markers,
|
||||
create_market_comparison_chart,
|
||||
create_price_time_series,
|
||||
create_time_series_with_events,
|
||||
create_volume_time_series,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Choropleth
|
||||
"create_choropleth_figure",
|
||||
"create_zone_map",
|
||||
# Time series
|
||||
"create_price_time_series",
|
||||
"create_volume_time_series",
|
||||
"create_market_comparison_chart",
|
||||
"create_time_series_with_events",
|
||||
"add_policy_markers",
|
||||
# Summary
|
||||
"create_metric_card_figure",
|
||||
"create_summary_metrics",
|
||||
# Bar charts
|
||||
"create_ranking_bar",
|
||||
"create_stacked_bar",
|
||||
"create_horizontal_bar",
|
||||
# Scatter plots
|
||||
"create_scatter_figure",
|
||||
"create_bubble_chart",
|
||||
# Radar charts
|
||||
"create_radar_figure",
|
||||
"create_comparison_radar",
|
||||
# Demographics
|
||||
"create_age_pyramid",
|
||||
"create_donut_chart",
|
||||
"create_income_distribution",
|
||||
]
|
||||
@@ -6,6 +6,17 @@ import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_ranking_bar(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -14,8 +25,8 @@ def create_ranking_bar(
|
||||
title: str | None = None,
|
||||
top_n: int = 10,
|
||||
bottom_n: int = 10,
|
||||
color_top: str = "#4CAF50",
|
||||
color_bottom: str = "#F44336",
|
||||
color_top: str = COLOR_POSITIVE,
|
||||
color_bottom: str = COLOR_NEGATIVE,
|
||||
value_format: str = ",.0f",
|
||||
) -> go.Figure:
|
||||
"""Create horizontal bar chart showing top and bottom rankings.
|
||||
@@ -87,10 +98,10 @@ def create_ranking_bar(
|
||||
barmode="group",
|
||||
showlegend=True,
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"autorange": "reversed", "title": None},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
)
|
||||
@@ -126,10 +137,10 @@ def create_stacked_bar(
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Default color scheme
|
||||
# Default color scheme using accessible palette
|
||||
if color_map is None:
|
||||
categories = df[category_column].unique()
|
||||
colors = px.colors.qualitative.Set2[: len(categories)]
|
||||
colors = CHART_PALETTE[: len(categories)]
|
||||
color_map = dict(zip(categories, colors, strict=False))
|
||||
|
||||
fig = px.bar(
|
||||
@@ -147,11 +158,11 @@ def create_stacked_bar(
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
|
||||
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
@@ -164,7 +175,7 @@ def create_horizontal_bar(
|
||||
name_column: str,
|
||||
value_column: str,
|
||||
title: str | None = None,
|
||||
color: str = "#2196F3",
|
||||
color: str = CHART_PALETTE[0],
|
||||
value_format: str = ",.0f",
|
||||
sort: bool = True,
|
||||
) -> go.Figure:
|
||||
@@ -204,10 +215,10 @@ def create_horizontal_bar(
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": None},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"title": None},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
)
|
||||
@@ -225,13 +236,13 @@ def _create_empty_figure(title: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
@@ -5,6 +5,13 @@ from typing import Any
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_choropleth_figure(
|
||||
geojson: dict[str, Any] | None,
|
||||
@@ -55,9 +62,9 @@ def create_choropleth_figure(
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title or "Toronto Housing Map",
|
||||
height=500,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
fig.add_annotation(
|
||||
text="No geometry data available. Complete QGIS digitization to enable map.",
|
||||
@@ -66,7 +73,7 @@ def create_choropleth_figure(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -98,17 +105,17 @@ def create_choropleth_figure(
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title,
|
||||
height=500,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
coloraxis_colorbar={
|
||||
"title": {
|
||||
"text": color_column.replace("_", " ").title(),
|
||||
"font": {"color": "#c9c9c9"},
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"thickness": 15,
|
||||
"len": 0.7,
|
||||
"tickfont": {"color": "#c9c9c9"},
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
)
|
||||
|
||||
@@ -5,6 +5,16 @@ from typing import Any
|
||||
import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PALETTE_GENDER,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_age_pyramid(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -52,7 +62,7 @@ def create_age_pyramid(
|
||||
x=male_values_neg,
|
||||
orientation="h",
|
||||
name="Male",
|
||||
marker_color="#2196F3",
|
||||
marker_color=PALETTE_GENDER["male"],
|
||||
hovertemplate="%{y}<br>Male: %{customdata:,}<extra></extra>",
|
||||
customdata=male_values,
|
||||
)
|
||||
@@ -65,7 +75,7 @@ def create_age_pyramid(
|
||||
x=female_values,
|
||||
orientation="h",
|
||||
name="Female",
|
||||
marker_color="#E91E63",
|
||||
marker_color=PALETTE_GENDER["female"],
|
||||
hovertemplate="%{y}<br>Female: %{x:,}<extra></extra>",
|
||||
)
|
||||
)
|
||||
@@ -77,12 +87,12 @@ def create_age_pyramid(
|
||||
title=title,
|
||||
barmode="overlay",
|
||||
bargap=0.1,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"title": "Population",
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"range": [-max_val * 1.1, max_val * 1.1],
|
||||
"tickvals": [-max_val, -max_val / 2, 0, max_val / 2, max_val],
|
||||
"ticktext": [
|
||||
@@ -93,7 +103,7 @@ def create_age_pyramid(
|
||||
f"{max_val:,.0f}",
|
||||
],
|
||||
},
|
||||
yaxis={"title": None, "gridcolor": "rgba(128,128,128,0.2)"},
|
||||
yaxis={"title": None, "gridcolor": GRID_COLOR},
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
@@ -127,17 +137,9 @@ def create_donut_chart(
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Use accessible palette by default
|
||||
if colors is None:
|
||||
colors = [
|
||||
"#2196F3",
|
||||
"#4CAF50",
|
||||
"#FF9800",
|
||||
"#E91E63",
|
||||
"#9C27B0",
|
||||
"#00BCD4",
|
||||
"#FFC107",
|
||||
"#795548",
|
||||
]
|
||||
colors = CHART_PALETTE
|
||||
|
||||
fig = go.Figure(
|
||||
go.Pie(
|
||||
@@ -153,8 +155,8 @@ def create_donut_chart(
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
showlegend=False,
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
@@ -167,7 +169,7 @@ def create_income_distribution(
|
||||
bracket_column: str,
|
||||
count_column: str,
|
||||
title: str | None = None,
|
||||
color: str = "#4CAF50",
|
||||
color: str = CHART_PALETTE[3], # Teal
|
||||
) -> go.Figure:
|
||||
"""Create histogram-style bar chart for income distribution.
|
||||
|
||||
@@ -199,17 +201,17 @@ def create_income_distribution(
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"title": "Income Bracket",
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"tickangle": -45,
|
||||
},
|
||||
yaxis={
|
||||
"title": "Households",
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 80},
|
||||
)
|
||||
@@ -227,13 +229,13 @@ def _create_empty_figure(title: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
@@ -4,6 +4,14 @@ from typing import Any
|
||||
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR_DARK,
|
||||
PAPER_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_radar_figure(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -32,16 +40,9 @@ def create_radar_figure(
|
||||
if not data or not metrics:
|
||||
return _create_empty_figure(title or "Radar Chart")
|
||||
|
||||
# Default colors
|
||||
# Use accessible palette by default
|
||||
if colors is None:
|
||||
colors = [
|
||||
"#2196F3",
|
||||
"#4CAF50",
|
||||
"#FF9800",
|
||||
"#E91E63",
|
||||
"#9C27B0",
|
||||
"#00BCD4",
|
||||
]
|
||||
colors = CHART_PALETTE
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
@@ -78,19 +79,19 @@ def create_radar_figure(
|
||||
polar={
|
||||
"radialaxis": {
|
||||
"visible": True,
|
||||
"gridcolor": "rgba(128,128,128,0.3)",
|
||||
"linecolor": "rgba(128,128,128,0.3)",
|
||||
"tickfont": {"color": "#c9c9c9"},
|
||||
"gridcolor": GRID_COLOR_DARK,
|
||||
"linecolor": GRID_COLOR_DARK,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"angularaxis": {
|
||||
"gridcolor": "rgba(128,128,128,0.3)",
|
||||
"linecolor": "rgba(128,128,128,0.3)",
|
||||
"tickfont": {"color": "#c9c9c9"},
|
||||
"gridcolor": GRID_COLOR_DARK,
|
||||
"linecolor": GRID_COLOR_DARK,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"bgcolor": "rgba(0,0,0,0)",
|
||||
"bgcolor": PAPER_BG,
|
||||
},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
showlegend=len(data) > 1,
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": -0.2},
|
||||
margin={"l": 40, "r": 40, "t": 60, "b": 40},
|
||||
@@ -133,7 +134,7 @@ def create_comparison_radar(
|
||||
metrics=metrics,
|
||||
name_column="__name__",
|
||||
title=title,
|
||||
colors=["#4CAF50", "#9E9E9E"],
|
||||
colors=[CHART_PALETTE[3], TEXT_SECONDARY], # Teal for selected, gray for avg
|
||||
)
|
||||
|
||||
|
||||
@@ -156,11 +157,11 @@ def _create_empty_figure(title: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
@@ -6,6 +6,15 @@ import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_scatter_figure(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -72,21 +81,21 @@ def create_scatter_figure(
|
||||
if trendline:
|
||||
fig.update_traces(
|
||||
selector={"mode": "lines"},
|
||||
line={"color": "#FF9800", "dash": "dash", "width": 2},
|
||||
line={"color": CHART_PALETTE[1], "dash": "dash", "width": 2},
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": x_title or x_column.replace("_", " ").title(),
|
||||
"zeroline": False,
|
||||
},
|
||||
yaxis={
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": y_title or y_column.replace("_", " ").title(),
|
||||
"zeroline": False,
|
||||
},
|
||||
@@ -140,19 +149,20 @@ def create_bubble_chart(
|
||||
hover_name=name_column,
|
||||
size_max=size_max,
|
||||
opacity=0.7,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": x_title or x_column.replace("_", " ").title(),
|
||||
},
|
||||
yaxis={
|
||||
"gridcolor": "rgba(128,128,128,0.2)",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": y_title or y_column.replace("_", " ").title(),
|
||||
},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
@@ -171,13 +181,13 @@ def _create_empty_figure(title: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
@@ -4,6 +4,14 @@ from typing import Any
|
||||
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
)
|
||||
|
||||
|
||||
def create_metric_card_figure(
|
||||
value: float | int | str,
|
||||
@@ -59,8 +67,12 @@ def create_metric_card_figure(
|
||||
"relative": False,
|
||||
"valueformat": ".1f",
|
||||
"suffix": delta_suffix,
|
||||
"increasing": {"color": "green" if positive_is_good else "red"},
|
||||
"decreasing": {"color": "red" if positive_is_good else "green"},
|
||||
"increasing": {
|
||||
"color": COLOR_POSITIVE if positive_is_good else COLOR_NEGATIVE
|
||||
},
|
||||
"decreasing": {
|
||||
"color": COLOR_NEGATIVE if positive_is_good else COLOR_POSITIVE
|
||||
},
|
||||
}
|
||||
|
||||
fig.add_trace(go.Indicator(**indicator_config))
|
||||
@@ -68,9 +80,9 @@ def create_metric_card_figure(
|
||||
fig.update_layout(
|
||||
height=120,
|
||||
margin={"l": 20, "r": 20, "t": 40, "b": 20},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font={"family": "Inter, sans-serif", "color": "#c9c9c9"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font={"family": "Inter, sans-serif", "color": TEXT_PRIMARY},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -5,6 +5,15 @@ from typing import Any
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_price_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -38,14 +47,14 @@ def create_price_time_series(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -59,6 +68,7 @@ def create_price_time_series(
|
||||
y=price_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
@@ -67,6 +77,7 @@ def create_price_time_series(
|
||||
y=price_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(line_color=CHART_PALETTE[0])
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
@@ -76,11 +87,11 @@ def create_price_time_series(
|
||||
yaxis_tickprefix="$",
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -118,14 +129,14 @@ def create_volume_time_series(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -140,6 +151,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.bar(
|
||||
@@ -148,6 +160,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(marker_color=CHART_PALETTE[0])
|
||||
else:
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
@@ -156,6 +169,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
@@ -164,6 +178,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(line_color=CHART_PALETTE[0])
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
@@ -172,11 +187,11 @@ def create_volume_time_series(
|
||||
yaxis_title=volume_column.replace("_", " ").title(),
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -211,14 +226,14 @@ def create_market_comparison_chart(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=400,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -230,8 +245,6 @@ def create_market_comparison_chart(
|
||||
|
||||
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
||||
|
||||
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
|
||||
|
||||
for i, metric in enumerate(metrics[:4]):
|
||||
if metric not in df.columns:
|
||||
continue
|
||||
@@ -242,7 +255,7 @@ def create_market_comparison_chart(
|
||||
x=df[date_column],
|
||||
y=df[metric],
|
||||
name=metric.replace("_", " ").title(),
|
||||
line={"color": colors[i % len(colors)]},
|
||||
line={"color": CHART_PALETTE[i % len(CHART_PALETTE)]},
|
||||
),
|
||||
secondary_y=secondary,
|
||||
)
|
||||
@@ -252,18 +265,18 @@ def create_market_comparison_chart(
|
||||
height=400,
|
||||
margin={"l": 40, "r": 40, "t": 50, "b": 40},
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
legend={
|
||||
"orientation": "h",
|
||||
"yanchor": "bottom",
|
||||
"y": 1.02,
|
||||
"xanchor": "right",
|
||||
"x": 1,
|
||||
"font": {"color": "#c9c9c9"},
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
)
|
||||
|
||||
@@ -290,13 +303,13 @@ def add_policy_markers(
|
||||
if not policy_events:
|
||||
return fig
|
||||
|
||||
# Color mapping for policy categories
|
||||
# Color mapping for policy categories using design tokens
|
||||
category_colors = {
|
||||
"monetary": "#1f77b4", # Blue
|
||||
"tax": "#2ca02c", # Green
|
||||
"regulatory": "#ff7f0e", # Orange
|
||||
"supply": "#9467bd", # Purple
|
||||
"economic": "#d62728", # Red
|
||||
"monetary": CHART_PALETTE[0], # Blue
|
||||
"tax": CHART_PALETTE[3], # Teal/green
|
||||
"regulatory": CHART_PALETTE[1], # Orange
|
||||
"supply": CHART_PALETTE[6], # Pink
|
||||
"economic": CHART_PALETTE[5], # Vermillion
|
||||
}
|
||||
|
||||
# Symbol mapping for expected direction
|
||||
@@ -313,7 +326,7 @@ def add_policy_markers(
|
||||
title = event.get("title", "Policy Event")
|
||||
level = event.get("level", "federal")
|
||||
|
||||
color = category_colors.get(category, "#666666")
|
||||
color = category_colors.get(category, TEXT_SECONDARY)
|
||||
symbol = direction_symbols.get(direction, "circle")
|
||||
|
||||
# Add vertical line for the event
|
||||
@@ -335,7 +348,7 @@ def add_policy_markers(
|
||||
"symbol": symbol,
|
||||
"size": 12,
|
||||
"color": color,
|
||||
"line": {"width": 1, "color": "white"},
|
||||
"line": {"width": 1, "color": TEXT_PRIMARY},
|
||||
},
|
||||
name=title,
|
||||
hovertemplate=(
|
||||
@@ -5,7 +5,15 @@ import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
from dash import Input, Output, callback
|
||||
|
||||
from portfolio_app.figures import (
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
from portfolio_app.figures.toronto import (
|
||||
create_donut_chart,
|
||||
create_horizontal_bar,
|
||||
create_radar_figure,
|
||||
@@ -109,18 +117,18 @@ def update_housing_trend(year: str, neighbourhood_id: int | None) -> go.Figure:
|
||||
x=[d["year"] for d in data],
|
||||
y=[d["avg_rent"] for d in data],
|
||||
mode="lines+markers",
|
||||
line={"color": "#2196F3", "width": 2},
|
||||
line={"color": CHART_PALETTE[0], "width": 2},
|
||||
marker={"size": 8},
|
||||
name="City Average",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "rgba(128,128,128,0.2)"},
|
||||
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": "Avg Rent (2BR)"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "title": "Avg Rent (2BR)"},
|
||||
showlegend=False,
|
||||
margin={"l": 40, "r": 10, "t": 10, "b": 30},
|
||||
)
|
||||
@@ -153,7 +161,7 @@ def update_housing_types(year: str) -> go.Figure:
|
||||
data=data,
|
||||
name_column="type",
|
||||
value_column="percentage",
|
||||
colors=["#4CAF50", "#2196F3"],
|
||||
colors=[CHART_PALETTE[3], CHART_PALETTE[0]], # Teal for owner, blue for renter
|
||||
)
|
||||
|
||||
|
||||
@@ -178,19 +186,19 @@ def update_safety_trend(year: str) -> go.Figure:
|
||||
x=[d["year"] for d in data],
|
||||
y=[d["crime_rate"] for d in data],
|
||||
mode="lines+markers",
|
||||
line={"color": "#FF5722", "width": 2},
|
||||
line={"color": CHART_PALETTE[5], "width": 2}, # Vermillion
|
||||
marker={"size": 8},
|
||||
fill="tozeroy",
|
||||
fillcolor="rgba(255,87,34,0.1)",
|
||||
fillcolor="rgba(213, 94, 0, 0.1)", # Vermillion with opacity
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "rgba(128,128,128,0.2)"},
|
||||
yaxis={"gridcolor": "rgba(128,128,128,0.2)", "title": "Crime Rate per 100K"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "title": "Crime Rate per 100K"},
|
||||
showlegend=False,
|
||||
margin={"l": 40, "r": 10, "t": 10, "b": 30},
|
||||
)
|
||||
@@ -233,7 +241,7 @@ def update_safety_types(year: str) -> go.Figure:
|
||||
data=data,
|
||||
name_column="category",
|
||||
value_column="count",
|
||||
color="#FF5722",
|
||||
color=CHART_PALETTE[5], # Vermillion for crime
|
||||
)
|
||||
|
||||
|
||||
@@ -264,7 +272,11 @@ def update_demographics_age(year: str) -> go.Figure:
|
||||
data=data,
|
||||
name_column="age_group",
|
||||
value_column="percentage",
|
||||
colors=["#9C27B0", "#673AB7", "#3F51B5"],
|
||||
colors=[
|
||||
CHART_PALETTE[2],
|
||||
CHART_PALETTE[0],
|
||||
CHART_PALETTE[4],
|
||||
], # Sky, Blue, Yellow
|
||||
)
|
||||
|
||||
|
||||
@@ -301,7 +313,7 @@ def update_demographics_income(year: str) -> go.Figure:
|
||||
data=data,
|
||||
name_column="bracket",
|
||||
value_column="count",
|
||||
color="#4CAF50",
|
||||
color=CHART_PALETTE[3], # Teal
|
||||
sort=False,
|
||||
)
|
||||
|
||||
@@ -333,7 +345,7 @@ def update_amenities_breakdown(year: str) -> go.Figure:
|
||||
data=data,
|
||||
name_column="type",
|
||||
value_column="count",
|
||||
color="#4CAF50",
|
||||
color=CHART_PALETTE[3], # Teal
|
||||
)
|
||||
|
||||
|
||||
@@ -387,9 +399,9 @@ def _empty_chart(message: str) -> go.Figure:
|
||||
"""Create an empty chart with a message."""
|
||||
fig = go.Figure()
|
||||
fig.update_layout(
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
@@ -400,6 +412,6 @@ def _empty_chart(message: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -4,7 +4,13 @@
|
||||
import plotly.graph_objects as go
|
||||
from dash import Input, Output, State, callback, no_update
|
||||
|
||||
from portfolio_app.figures import create_choropleth_figure, create_ranking_bar
|
||||
from portfolio_app.design import (
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
from portfolio_app.figures.toronto import create_choropleth_figure, create_ranking_bar
|
||||
from portfolio_app.toronto.services import (
|
||||
get_amenities_data,
|
||||
get_demographics_data,
|
||||
@@ -267,8 +273,8 @@ def _empty_map(message: str) -> go.Figure:
|
||||
"zoom": 9.5,
|
||||
},
|
||||
margin={"l": 0, "r": 0, "t": 0, "b": 0},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
fig.add_annotation(
|
||||
text=message,
|
||||
@@ -277,7 +283,7 @@ def _empty_map(message: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -286,9 +292,9 @@ def _empty_chart(message: str) -> go.Figure:
|
||||
"""Create an empty chart with a message."""
|
||||
fig = go.Figure()
|
||||
fig.update_layout(
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
@@ -299,6 +305,6 @@ def _empty_chart(message: str) -> go.Figure:
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -8,11 +8,18 @@ from sqlalchemy.orm import Mapped, mapped_column
|
||||
|
||||
from .base import Base
|
||||
|
||||
# Schema constants
|
||||
RAW_TORONTO_SCHEMA = "raw_toronto"
|
||||
|
||||
|
||||
class DimTime(Base):
|
||||
"""Time dimension table."""
|
||||
"""Time dimension table (shared across all projects).
|
||||
|
||||
Note: Stays in public schema as it's a shared dimension.
|
||||
"""
|
||||
|
||||
__tablename__ = "dim_time"
|
||||
__table_args__ = {"schema": "public"}
|
||||
|
||||
date_key: Mapped[int] = mapped_column(Integer, primary_key=True)
|
||||
full_date: Mapped[date] = mapped_column(Date, nullable=False, unique=True)
|
||||
@@ -27,6 +34,7 @@ class DimCMHCZone(Base):
|
||||
"""CMHC zone dimension table with PostGIS geometry."""
|
||||
|
||||
__tablename__ = "dim_cmhc_zone"
|
||||
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
|
||||
|
||||
zone_key: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
zone_code: Mapped[str] = mapped_column(String(10), nullable=False, unique=True)
|
||||
@@ -41,6 +49,7 @@ class DimNeighbourhood(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "dim_neighbourhood"
|
||||
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
|
||||
|
||||
neighbourhood_id: Mapped[int] = mapped_column(Integer, primary_key=True)
|
||||
name: Mapped[str] = mapped_column(String(100), nullable=False)
|
||||
@@ -69,6 +78,7 @@ class DimPolicyEvent(Base):
|
||||
"""Policy event dimension for time-series annotation."""
|
||||
|
||||
__tablename__ = "dim_policy_event"
|
||||
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
|
||||
|
||||
event_id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
event_date: Mapped[date] = mapped_column(Date, nullable=False)
|
||||
|
||||
@@ -4,6 +4,7 @@ from sqlalchemy import ForeignKey, Index, Integer, Numeric, String
|
||||
from sqlalchemy.orm import Mapped, mapped_column, relationship
|
||||
|
||||
from .base import Base
|
||||
from .dimensions import RAW_TORONTO_SCHEMA
|
||||
|
||||
|
||||
class BridgeCMHCNeighbourhood(Base):
|
||||
@@ -14,6 +15,11 @@ class BridgeCMHCNeighbourhood(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "bridge_cmhc_neighbourhood"
|
||||
__table_args__ = (
|
||||
Index("ix_bridge_cmhc_zone", "cmhc_zone_code"),
|
||||
Index("ix_bridge_neighbourhood", "neighbourhood_id"),
|
||||
{"schema": RAW_TORONTO_SCHEMA},
|
||||
)
|
||||
|
||||
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
cmhc_zone_code: Mapped[str] = mapped_column(String(10), nullable=False)
|
||||
@@ -22,11 +28,6 @@ class BridgeCMHCNeighbourhood(Base):
|
||||
Numeric(5, 4), nullable=False
|
||||
) # 0.0000 to 1.0000
|
||||
|
||||
__table_args__ = (
|
||||
Index("ix_bridge_cmhc_zone", "cmhc_zone_code"),
|
||||
Index("ix_bridge_neighbourhood", "neighbourhood_id"),
|
||||
)
|
||||
|
||||
|
||||
class FactCensus(Base):
|
||||
"""Census statistics by neighbourhood and year.
|
||||
@@ -35,6 +36,10 @@ class FactCensus(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "fact_census"
|
||||
__table_args__ = (
|
||||
Index("ix_fact_census_neighbourhood_year", "neighbourhood_id", "census_year"),
|
||||
{"schema": RAW_TORONTO_SCHEMA},
|
||||
)
|
||||
|
||||
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
@@ -66,10 +71,6 @@ class FactCensus(Base):
|
||||
Numeric(12, 2), nullable=True
|
||||
)
|
||||
|
||||
__table_args__ = (
|
||||
Index("ix_fact_census_neighbourhood_year", "neighbourhood_id", "census_year"),
|
||||
)
|
||||
|
||||
|
||||
class FactCrime(Base):
|
||||
"""Crime statistics by neighbourhood and year.
|
||||
@@ -78,6 +79,11 @@ class FactCrime(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "fact_crime"
|
||||
__table_args__ = (
|
||||
Index("ix_fact_crime_neighbourhood_year", "neighbourhood_id", "year"),
|
||||
Index("ix_fact_crime_type", "crime_type"),
|
||||
{"schema": RAW_TORONTO_SCHEMA},
|
||||
)
|
||||
|
||||
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
@@ -86,11 +92,6 @@ class FactCrime(Base):
|
||||
count: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
rate_per_100k: Mapped[float | None] = mapped_column(Numeric(10, 2), nullable=True)
|
||||
|
||||
__table_args__ = (
|
||||
Index("ix_fact_crime_neighbourhood_year", "neighbourhood_id", "year"),
|
||||
Index("ix_fact_crime_type", "crime_type"),
|
||||
)
|
||||
|
||||
|
||||
class FactAmenities(Base):
|
||||
"""Amenity counts by neighbourhood.
|
||||
@@ -99,6 +100,11 @@ class FactAmenities(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "fact_amenities"
|
||||
__table_args__ = (
|
||||
Index("ix_fact_amenities_neighbourhood_year", "neighbourhood_id", "year"),
|
||||
Index("ix_fact_amenities_type", "amenity_type"),
|
||||
{"schema": RAW_TORONTO_SCHEMA},
|
||||
)
|
||||
|
||||
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
neighbourhood_id: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
@@ -106,11 +112,6 @@ class FactAmenities(Base):
|
||||
count: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
year: Mapped[int] = mapped_column(Integer, nullable=False)
|
||||
|
||||
__table_args__ = (
|
||||
Index("ix_fact_amenities_neighbourhood_year", "neighbourhood_id", "year"),
|
||||
Index("ix_fact_amenities_type", "amenity_type"),
|
||||
)
|
||||
|
||||
|
||||
class FactRentals(Base):
|
||||
"""Fact table for CMHC rental market data.
|
||||
@@ -119,13 +120,16 @@ class FactRentals(Base):
|
||||
"""
|
||||
|
||||
__tablename__ = "fact_rentals"
|
||||
__table_args__ = {"schema": RAW_TORONTO_SCHEMA}
|
||||
|
||||
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
|
||||
date_key: Mapped[int] = mapped_column(
|
||||
Integer, ForeignKey("dim_time.date_key"), nullable=False
|
||||
Integer, ForeignKey("public.dim_time.date_key"), nullable=False
|
||||
)
|
||||
zone_key: Mapped[int] = mapped_column(
|
||||
Integer, ForeignKey("dim_cmhc_zone.zone_key"), nullable=False
|
||||
Integer,
|
||||
ForeignKey(f"{RAW_TORONTO_SCHEMA}.dim_cmhc_zone.zone_key"),
|
||||
nullable=False,
|
||||
)
|
||||
bedroom_type: Mapped[str] = mapped_column(String(20), nullable=False)
|
||||
universe: Mapped[int | None] = mapped_column(Integer, nullable=True)
|
||||
@@ -139,6 +143,6 @@ class FactRentals(Base):
|
||||
rent_change_pct: Mapped[float | None] = mapped_column(Numeric(5, 2), nullable=True)
|
||||
reliability_code: Mapped[str | None] = mapped_column(String(2), nullable=True)
|
||||
|
||||
# Relationships
|
||||
time = relationship("DimTime", backref="rentals")
|
||||
zone = relationship("DimCMHCZone", backref="rentals")
|
||||
# Relationships - explicit foreign_keys needed for cross-schema joins
|
||||
time = relationship("DimTime", foreign_keys=[date_key], backref="rentals")
|
||||
zone = relationship("DimCMHCZone", foreign_keys=[zone_key], backref="rentals")
|
||||
|
||||
@@ -15,6 +15,7 @@ from pathlib import Path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
||||
|
||||
from portfolio_app.toronto.models import create_tables, get_engine # noqa: E402
|
||||
from portfolio_app.toronto.models.dimensions import RAW_TORONTO_SCHEMA # noqa: E402
|
||||
|
||||
|
||||
def main() -> int:
|
||||
@@ -32,16 +33,30 @@ def main() -> int:
|
||||
result.fetchone()
|
||||
print("Database connection successful")
|
||||
|
||||
# Create domain-specific schemas
|
||||
with engine.connect() as conn:
|
||||
conn.execute(text(f"CREATE SCHEMA IF NOT EXISTS {RAW_TORONTO_SCHEMA}"))
|
||||
conn.commit()
|
||||
print(f"Created schema: {RAW_TORONTO_SCHEMA}")
|
||||
|
||||
# Create all tables
|
||||
create_tables()
|
||||
print("Schema created successfully")
|
||||
|
||||
# List created tables
|
||||
# List created tables by schema
|
||||
from sqlalchemy import inspect
|
||||
|
||||
inspector = inspect(engine)
|
||||
tables = inspector.get_table_names()
|
||||
print(f"Created tables: {', '.join(tables)}")
|
||||
|
||||
# Public schema tables
|
||||
public_tables = inspector.get_table_names(schema="public")
|
||||
if public_tables:
|
||||
print(f"Public schema tables: {', '.join(public_tables)}")
|
||||
|
||||
# raw_toronto schema tables
|
||||
toronto_tables = inspector.get_table_names(schema=RAW_TORONTO_SCHEMA)
|
||||
if toronto_tables:
|
||||
print(f"{RAW_TORONTO_SCHEMA} schema tables: {', '.join(toronto_tables)}")
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
Reference in New Issue
Block a user