Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
- Rename dbt project from toronto_housing to portfolio - Restructure dbt models into domain subdirectories: - shared/ for cross-domain dimensions (dim_time) - staging/toronto/, intermediate/toronto/, marts/toronto/ - Update SQLAlchemy models for raw_toronto schema - Add explicit cross-schema FK relationships for FactRentals - Namespace figure factories under figures/toronto/ - Namespace notebooks under notebooks/toronto/ - Update Makefile with domain-specific targets and env loading - Update all documentation for multi-dashboard structure This enables adding new dashboard projects (e.g., /football, /energy) without structural conflicts or naming collisions. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
192 lines
4.7 KiB
Plaintext
192 lines
4.7 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Amenity Radar Chart\n",
|
||
"\n",
|
||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"from dotenv import load_dotenv\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"\n",
|
||
"# Load .env from project root\n",
|
||
"load_dotenv(\"../../.env\")\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" parks_index,\n",
|
||
" schools_index,\n",
|
||
" transit_index,\n",
|
||
" amenity_index,\n",
|
||
" amenity_tier\n",
|
||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||
"ORDER BY amenity_index DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||
"2. Reshape for radar chart format"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Select representative neighbourhoods\n",
|
||
"top_5 = df.head(5)\n",
|
||
"bottom_5 = df.tail(5)\n",
|
||
"\n",
|
||
"# Prepare radar data\n",
|
||
"categories = [\"Parks\", \"Schools\", \"Transit\"]\n",
|
||
"index_columns = [\"parks_index\", \"schools_index\", \"transit_index\"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||
"display(\n",
|
||
" top_5[\n",
|
||
" [\n",
|
||
" \"neighbourhood_name\",\n",
|
||
" \"parks_index\",\n",
|
||
" \"schools_index\",\n",
|
||
" \"transit_index\",\n",
|
||
" \"amenity_index\",\n",
|
||
" ]\n",
|
||
" ]\n",
|
||
")\n",
|
||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||
"display(\n",
|
||
" bottom_5[\n",
|
||
" [\n",
|
||
" \"neighbourhood_name\",\n",
|
||
" \"parks_index\",\n",
|
||
" \"schools_index\",\n",
|
||
" \"transit_index\",\n",
|
||
" \"amenity_index\",\n",
|
||
" ]\n",
|
||
" ]\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_radar` from `portfolio_app.figures.toronto.radar`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"\n",
|
||
"sys.path.insert(0, \"../..\")\n",
|
||
"\n",
|
||
"from portfolio_app.figures.toronto.radar import create_comparison_radar\n",
|
||
"\n",
|
||
"# Compare top neighbourhood vs city average (100)\n",
|
||
"top_hood = top_5.iloc[0]\n",
|
||
"metrics = [\"parks_index\", \"schools_index\", \"transit_index\"]\n",
|
||
"\n",
|
||
"fig = create_comparison_radar(\n",
|
||
" selected_data=top_hood.to_dict(),\n",
|
||
" average_data={\"parks_index\": 100, \"schools_index\": 100, \"transit_index\": 100},\n",
|
||
" metrics=metrics,\n",
|
||
" selected_name=top_hood[\"neighbourhood_name\"],\n",
|
||
" average_name=\"City Average\",\n",
|
||
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Index Interpretation\n",
|
||
"\n",
|
||
"| Value | Meaning |\n",
|
||
"|-------|--------|\n",
|
||
"| < 100 | Below city average |\n",
|
||
"| = 100 | City average |\n",
|
||
"| > 100 | Above city average |"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|