Files
personal-portfolio/notebooks/toronto/demographics/age_distribution.ipynb
l3ocho 62d1a52eed
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
refactor: multi-dashboard structural migration
- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-01 19:08:20 -05:00

184 lines
4.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Age Distribution Analysis\n",
"\n",
"Compares median age and age index across Toronto neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from dotenv import load_dotenv\n",
"from sqlalchemy import create_engine\n",
"\n",
"# Load .env from project root\n",
"load_dotenv(\"../../.env\")\n",
"\n",
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" median_age,\n",
" age_index,\n",
" city_avg_age,\n",
" population,\n",
" income_quintile,\n",
" pct_renter_occupied\n",
"FROM public_marts.mart_neighbourhood_demographics\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
" AND median_age IS NOT NULL\n",
"ORDER BY median_age DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with age data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent census year\n",
"2. Calculate deviation from city average\n",
"3. Classify as younger/older than average"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
")\n",
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
"\n",
"data = df.to_dict(\"records\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"City Average Age: {city_avg:.1f}\")\n",
"print(\"\\nYoungest Neighbourhoods:\")\n",
"display(\n",
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")\n",
"print(\"\\nOldest Neighbourhoods:\")\n",
"display(\n",
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"sys.path.insert(0, \"../..\")\n",
"\n",
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
"\n",
"fig = create_ranking_bar(\n",
" data=data,\n",
" name_column=\"neighbourhood_name\",\n",
" value_column=\"median_age\",\n",
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
" top_n=10,\n",
" bottom_n=10,\n",
" color_top=\"#FF9800\", # Orange for older\n",
" color_bottom=\"#2196F3\", # Blue for younger\n",
" value_format=\".1f\",\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Age vs Income Correlation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Age by income quintile\n",
"print(\"Median Age by Income Quintile:\")\n",
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}