Files
personal-portfolio/portfolio_app/figures/time_series.py
lmiranda 077e426d34 feat: add Sprint 5 visualization components and Toronto dashboard
- Add figure factories: choropleth, time_series, summary_cards
- Add shared components: map_controls, time_slider, metric_card
- Create Toronto dashboard page with KPI cards, choropleth maps, and time series
- Add dashboard callbacks for interactivity
- Placeholder data for demonstration until QGIS boundaries are complete

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-11 16:20:01 -05:00

234 lines
5.9 KiB
Python

"""Time series figure factories for Toronto housing data."""
from typing import Any
import plotly.express as px
import plotly.graph_objects as go
def create_price_time_series(
data: list[dict[str, Any]],
date_column: str = "full_date",
price_column: str = "avg_price",
group_column: str | None = None,
title: str = "Average Price Over Time",
show_yoy: bool = True,
) -> go.Figure:
"""Create a time series chart for price data.
Args:
data: List of records with date and price columns.
date_column: Column name for dates.
price_column: Column name for price values.
group_column: Optional column for grouping (e.g., district_code).
title: Chart title.
show_yoy: Whether to show year-over-year change annotations.
Returns:
Plotly Figure object.
"""
import pandas as pd
if not data:
fig = go.Figure()
fig.add_annotation(
text="No data available",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
)
fig.update_layout(title=title, height=350)
return fig
df = pd.DataFrame(data)
df[date_column] = pd.to_datetime(df[date_column])
if group_column and group_column in df.columns:
fig = px.line(
df,
x=date_column,
y=price_column,
color=group_column,
title=title,
)
else:
fig = px.line(
df,
x=date_column,
y=price_column,
title=title,
)
fig.update_layout(
height=350,
margin={"l": 40, "r": 20, "t": 50, "b": 40},
xaxis_title="Date",
yaxis_title=price_column.replace("_", " ").title(),
yaxis_tickprefix="$",
yaxis_tickformat=",",
hovermode="x unified",
)
return fig
def create_volume_time_series(
data: list[dict[str, Any]],
date_column: str = "full_date",
volume_column: str = "sales_count",
group_column: str | None = None,
title: str = "Sales Volume Over Time",
chart_type: str = "bar",
) -> go.Figure:
"""Create a time series chart for volume/count data.
Args:
data: List of records with date and volume columns.
date_column: Column name for dates.
volume_column: Column name for volume values.
group_column: Optional column for grouping.
title: Chart title.
chart_type: 'bar' or 'line'.
Returns:
Plotly Figure object.
"""
import pandas as pd
if not data:
fig = go.Figure()
fig.add_annotation(
text="No data available",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
)
fig.update_layout(title=title, height=350)
return fig
df = pd.DataFrame(data)
df[date_column] = pd.to_datetime(df[date_column])
if chart_type == "bar":
if group_column and group_column in df.columns:
fig = px.bar(
df,
x=date_column,
y=volume_column,
color=group_column,
title=title,
)
else:
fig = px.bar(
df,
x=date_column,
y=volume_column,
title=title,
)
else:
if group_column and group_column in df.columns:
fig = px.line(
df,
x=date_column,
y=volume_column,
color=group_column,
title=title,
)
else:
fig = px.line(
df,
x=date_column,
y=volume_column,
title=title,
)
fig.update_layout(
height=350,
margin={"l": 40, "r": 20, "t": 50, "b": 40},
xaxis_title="Date",
yaxis_title=volume_column.replace("_", " ").title(),
yaxis_tickformat=",",
hovermode="x unified",
)
return fig
def create_market_comparison_chart(
data: list[dict[str, Any]],
date_column: str = "full_date",
metrics: list[str] | None = None,
title: str = "Market Indicators",
) -> go.Figure:
"""Create a multi-metric comparison chart.
Args:
data: List of records with date and metric columns.
date_column: Column name for dates.
metrics: List of metric columns to display.
title: Chart title.
Returns:
Plotly Figure object with secondary y-axis.
"""
import pandas as pd
from plotly.subplots import make_subplots
if not data:
fig = go.Figure()
fig.add_annotation(
text="No data available",
xref="paper",
yref="paper",
x=0.5,
y=0.5,
showarrow=False,
)
fig.update_layout(title=title, height=400)
return fig
if metrics is None:
metrics = ["avg_price", "sales_count"]
df = pd.DataFrame(data)
df[date_column] = pd.to_datetime(df[date_column])
fig = make_subplots(specs=[[{"secondary_y": True}]])
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
for i, metric in enumerate(metrics[:4]):
if metric not in df.columns:
continue
secondary = i > 0
fig.add_trace(
go.Scatter(
x=df[date_column],
y=df[metric],
name=metric.replace("_", " ").title(),
line={"color": colors[i % len(colors)]},
),
secondary_y=secondary,
)
fig.update_layout(
title=title,
height=400,
margin={"l": 40, "r": 40, "t": 50, "b": 40},
hovermode="x unified",
legend={
"orientation": "h",
"yanchor": "bottom",
"y": 1.02,
"xanchor": "right",
"x": 1,
},
)
return fig