Some checks failed
CI / lint-and-test (push) Has been cancelled
Fixes Pylance type error - create_engine() expects str, not str | None. Using direct access raises KeyError if not set, which is correct behavior. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
188 lines
4.6 KiB
Plaintext
188 lines
4.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Rent Trend Line Chart\n",
|
|
"\n",
|
|
"Shows 5-year rental price trends across Toronto neighbourhoods."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 1. Data Reference\n",
|
|
"\n",
|
|
"### Source Tables\n",
|
|
"\n",
|
|
"| Table | Grain | Key Columns |\n",
|
|
"|-------|-------|-------------|\n",
|
|
"| `mart_neighbourhood_housing` | neighbourhood \u00d7 year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
|
"\n",
|
|
"### SQL Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from sqlalchemy import create_engine\n",
|
|
"from dotenv import load_dotenv\n",
|
|
"import os\n",
|
|
"\n",
|
|
"# Load .env from project root\n",
|
|
"load_dotenv('../../.env')\n",
|
|
"\n",
|
|
"engine = create_engine(os.environ['DATABASE_URL'])\n",
|
|
"\n",
|
|
"# City-wide average rent by year\n",
|
|
"query = \"\"\"\n",
|
|
"SELECT\n",
|
|
" year,\n",
|
|
" AVG(avg_rent_bachelor) as avg_rent_bachelor,\n",
|
|
" AVG(avg_rent_1bed) as avg_rent_1bed,\n",
|
|
" AVG(avg_rent_2bed) as avg_rent_2bed,\n",
|
|
" AVG(avg_rent_3bed) as avg_rent_3bed,\n",
|
|
" AVG(rent_yoy_change_pct) as avg_yoy_change\n",
|
|
"FROM public_marts.mart_neighbourhood_housing\n",
|
|
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_housing)\n",
|
|
"GROUP BY year\n",
|
|
"ORDER BY year\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"df = pd.read_sql(query, engine)\n",
|
|
"print(f\"Loaded {len(df)} years of rent data\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Transformation Steps\n",
|
|
"\n",
|
|
"1. Aggregate rent by year (city-wide average)\n",
|
|
"2. Convert year to datetime for proper x-axis\n",
|
|
"3. Reshape for multi-line chart by bedroom type"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create date column from year\n",
|
|
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
|
"\n",
|
|
"# Melt for multi-line chart\n",
|
|
"df_melted = df.melt(\n",
|
|
" id_vars=['year', 'date'],\n",
|
|
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
|
|
" var_name='bedroom_type',\n",
|
|
" value_name='avg_rent'\n",
|
|
")\n",
|
|
"\n",
|
|
"# Clean labels\n",
|
|
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
|
|
" 'avg_rent_bachelor': 'Bachelor',\n",
|
|
" 'avg_rent_1bed': '1 Bedroom',\n",
|
|
" 'avg_rent_2bed': '2 Bedroom',\n",
|
|
" 'avg_rent_3bed': '3 Bedroom'\n",
|
|
"})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Sample Output"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## 2. Data Visualization\n",
|
|
"\n",
|
|
"### Figure Factory\n",
|
|
"\n",
|
|
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
|
|
"\n",
|
|
"**Key Parameters:**\n",
|
|
"- `date_column`: 'date'\n",
|
|
"- `price_column`: 'avg_rent'\n",
|
|
"- `group_column`: 'bedroom_type' (for multi-line)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.insert(0, '../..')\n",
|
|
"\n",
|
|
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
|
"\n",
|
|
"data = df_melted.to_dict('records')\n",
|
|
"\n",
|
|
"fig = create_price_time_series(\n",
|
|
" data=data,\n",
|
|
" date_column='date',\n",
|
|
" price_column='avg_rent',\n",
|
|
" group_column='bedroom_type',\n",
|
|
" title='Toronto Average Rent Trend (5 Years)',\n",
|
|
")\n",
|
|
"\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### YoY Change Analysis"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Show year-over-year changes\n",
|
|
"print(\"Year-over-Year Rent Change (%)\")\n",
|
|
"df[['year', 'avg_yoy_change']].dropna()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.11.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|