Some checks failed
CI / lint-and-test (push) Has been cancelled
Phase 1 - Architecture Documentation: - Add Architecture section with Mermaid flowchart to README - Create docs/DATABASE_SCHEMA.md with full ERD Phase 2 - CI/CD: - Add CI badge to README - Create .gitea/workflows/ci.yml for linting and tests - Create .gitea/workflows/deploy-staging.yml - Create .gitea/workflows/deploy-production.yml Phase 3 - Operational Scripts: - Create scripts/logs.sh for docker compose log following - Create scripts/run-detached.sh with health check loop - Create scripts/etl/toronto.sh for Toronto data pipeline - Add Makefile targets: logs, run-detached, etl-toronto Phase 4 - Runbooks: - Create docs/runbooks/adding-dashboard.md - Create docs/runbooks/deployment.md Phase 5 - Hygiene: - Create MIT LICENSE file Phase 6 - Production: - Add live demo link to README (leodata.science) Closes #78, #79, #80, #81, #82, #83, #84, #85, #86, #87, #88, #89, #91 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
5.0 KiB
5.0 KiB
Runbook: Adding a New Dashboard
This runbook describes how to add a new data dashboard to the portfolio application.
Prerequisites
- Data sources identified and accessible
- Database schema designed
- Basic Dash/Plotly familiarity
Directory Structure
Create the following structure under portfolio_app/:
portfolio_app/
├── pages/
│ └── {dashboard_name}/
│ ├── dashboard.py # Main layout with tabs
│ ├── methodology.py # Data sources and methods page
│ ├── tabs/
│ │ ├── __init__.py
│ │ ├── overview.py # Overview tab layout
│ │ └── ... # Additional tab layouts
│ └── callbacks/
│ ├── __init__.py
│ └── ... # Callback modules
├── {dashboard_name}/ # Data logic (outside pages/)
│ ├── __init__.py
│ ├── parsers/ # API/CSV extraction
│ │ └── __init__.py
│ ├── loaders/ # Database operations
│ │ └── __init__.py
│ ├── schemas/ # Pydantic models
│ │ └── __init__.py
│ └── models/ # SQLAlchemy ORM
│ └── __init__.py
Step-by-Step Checklist
1. Data Layer
- Create Pydantic schemas in
{dashboard_name}/schemas/ - Create SQLAlchemy models in
{dashboard_name}/models/ - Create parsers in
{dashboard_name}/parsers/ - Create loaders in
{dashboard_name}/loaders/ - Add database migrations if needed
2. dbt Models
Create dbt models in dbt/models/:
staging/stg_{source}__{entity}.sql- Raw data cleaningintermediate/int_{domain}__{transform}.sql- Business logicmarts/mart_{domain}.sql- Final analytical tables
Follow naming conventions:
- Staging:
stg_{source}__{entity} - Intermediate:
int_{domain}__{transform} - Marts:
mart_{domain}
3. Visualization Layer
- Create figure factories in
figures/(or reuse existing) - Follow the factory pattern:
create_{chart_type}_figure(data, **kwargs)
4. Dashboard Pages
Main Dashboard (pages/{dashboard_name}/dashboard.py)
import dash
from dash import html, dcc
import dash_mantine_components as dmc
dash.register_page(
__name__,
path="/{dashboard_name}",
title="{Dashboard Title}",
description="{Description}"
)
def layout():
return dmc.Container([
# Header
dmc.Title("{Dashboard Title}", order=1),
# Tabs
dmc.Tabs([
dmc.TabsList([
dmc.TabsTab("Overview", value="overview"),
# Add more tabs
]),
dmc.TabsPanel(overview_tab(), value="overview"),
# Add more panels
], value="overview"),
])
Tab Layouts (pages/{dashboard_name}/tabs/)
- Create one file per tab
- Export layout function from each
Callbacks (pages/{dashboard_name}/callbacks/)
- Create callback modules for interactivity
- Import and register in dashboard.py
5. Navigation
Add to sidebar in components/sidebar.py:
dmc.NavLink(
label="{Dashboard Name}",
href="/{dashboard_name}",
icon=DashIconify(icon="..."),
)
6. Documentation
- Create methodology page (
pages/{dashboard_name}/methodology.py) - Document data sources
- Document transformation logic
- Add notebooks to
notebooks/{dashboard_name}/if needed
7. Testing
- Add unit tests for parsers
- Add unit tests for loaders
- Add integration tests for callbacks
- Run
make test
8. Final Verification
- All pages render without errors
- All callbacks respond correctly
- Data loads successfully
- dbt models run cleanly (
make dbt-run) - Linting passes (
make lint) - Tests pass (
make test)
Example: Toronto Dashboard
Reference implementation: portfolio_app/pages/toronto/
Key files:
dashboard.py- Main layout with 5 tabstabs/overview.py- Livability scores, scatter plotscallbacks/map_callbacks.py- Choropleth interactionstoronto/models/dimensions.py- Dimension tablestoronto/models/facts.py- Fact tables
Common Patterns
Figure Factories
# figures/choropleth.py
def create_choropleth_figure(
gdf: gpd.GeoDataFrame,
value_column: str,
title: str,
**kwargs
) -> go.Figure:
...
Callbacks
# callbacks/map_callbacks.py
@callback(
Output("neighbourhood-details", "children"),
Input("choropleth-map", "clickData"),
)
def update_details(click_data):
...
Data Loading
# {dashboard_name}/loaders/load.py
def load_data(session: Session) -> None:
# Parse from source
records = parse_source_data()
# Validate with Pydantic
validated = [Schema(**r) for r in records]
# Load to database
for record in validated:
session.add(Model(**record.model_dump()))
session.commit()