Phase 6 - Jupyter Notebooks (15 total): - Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter - Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar - Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line - Demographics tab: income_choropleth, age_distribution, population_density_bar - Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar Phase 7 - Documentation: - Updated CLAUDE.md with Sprint 9 completion status - Added notebooks directory to application structure - Expanded figures directory listing Closes #71, #72, #73, #74, #75, #76, #77 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
174 lines
4.2 KiB
Plaintext
174 lines
4.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Amenity Radar Chart\n",
|
||
"\n",
|
||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" parks_index,\n",
|
||
" schools_index,\n",
|
||
" transit_index,\n",
|
||
" amenity_index,\n",
|
||
" amenity_tier\n",
|
||
"FROM mart_neighbourhood_amenities\n",
|
||
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
|
||
"ORDER BY amenity_index DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||
"2. Reshape for radar chart format"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Select representative neighbourhoods\n",
|
||
"top_5 = df.head(5)\n",
|
||
"bottom_5 = df.tail(5)\n",
|
||
"\n",
|
||
"# Prepare radar data\n",
|
||
"categories = ['Parks', 'Schools', 'Transit']\n",
|
||
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
|
||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_radar` from `portfolio_app.figures.radar`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.radar import create_radar_figure\n",
|
||
"\n",
|
||
"# Compare top neighbourhood vs city average (100)\n",
|
||
"top_hood = top_5.iloc[0]\n",
|
||
"\n",
|
||
"data = [\n",
|
||
" {\n",
|
||
" 'name': top_hood['neighbourhood_name'],\n",
|
||
" 'values': [top_hood['parks_index'], top_hood['schools_index'], top_hood['transit_index']],\n",
|
||
" 'categories': categories\n",
|
||
" },\n",
|
||
" {\n",
|
||
" 'name': 'City Average',\n",
|
||
" 'values': [100, 100, 100],\n",
|
||
" 'categories': categories\n",
|
||
" }\n",
|
||
"]\n",
|
||
"\n",
|
||
"fig = create_radar_figure(\n",
|
||
" data=data,\n",
|
||
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Index Interpretation\n",
|
||
"\n",
|
||
"| Value | Meaning |\n",
|
||
"|-------|--------|\n",
|
||
"| < 100 | Below city average |\n",
|
||
"| = 100 | City average |\n",
|
||
"| > 100 | Above city average |"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|