Files
personal-portfolio/notebooks/housing/tenure_breakdown_bar.ipynb
lmiranda 69c4216cd5 fix: Update notebooks to use public_marts schema
dbt creates mart tables in public_marts schema, not public.
Updated all notebook SQL queries to use the correct schema.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 19:45:23 -05:00

189 lines
4.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Housing Tenure Breakdown Bar Chart\n",
"\n",
"Shows the distribution of owner-occupied vs renter-occupied dwellings across neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_housing` | neighbourhood × year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" pct_owner_occupied,\n",
" pct_renter_occupied,\n",
" income_quintile,\n",
" total_rental_units,\n",
" average_dwelling_value\n",
"FROM public_marts.mart_neighbourhood_housing\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
" AND pct_owner_occupied IS NOT NULL\n",
"ORDER BY pct_renter_occupied DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods with tenure data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Filter to most recent year with tenure data\n",
"2. Melt owner/renter columns for stacked bar\n",
"3. Sort by renter percentage (highest first)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prepare for stacked bar\n",
"df_stacked = df.melt(\n",
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
" var_name='tenure_type',\n",
" value_name='percentage'\n",
")\n",
"\n",
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
" 'pct_owner_occupied': 'Owner',\n",
" 'pct_renter_occupied': 'Renter'\n",
"})\n",
"\n",
"data = df_stacked.to_dict('records')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Highest Renter Neighbourhoods:\")\n",
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
"\n",
"**Key Parameters:**\n",
"- `x_column`: 'neighbourhood_name'\n",
"- `value_column`: 'percentage'\n",
"- `category_column`: 'tenure_type'\n",
"- `show_percentages`: True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
"\n",
"# Show top 20 by renter percentage\n",
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
"\n",
"fig = create_stacked_bar(\n",
" data=data_filtered,\n",
" x_column='neighbourhood_name',\n",
" value_column='percentage',\n",
" category_column='tenure_type',\n",
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
" show_percentages=True,\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### City-Wide Distribution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# City-wide averages\n",
"print(f\"City Average Owner-Occupied: {df['pct_owner_occupied'].mean():.1f}%\")\n",
"print(f\"City Average Renter-Occupied: {df['pct_renter_occupied'].mean():.1f}%\")\n",
"\n",
"# By income quintile\n",
"print(\"\\nTenure by Income Quintile:\")\n",
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}