dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
189 lines
4.9 KiB
Plaintext
189 lines
4.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Housing Tenure Breakdown Bar Chart\n",
|
||
"\n",
|
||
"Shows the distribution of owner-occupied vs renter-occupied dwellings across neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_housing` | neighbourhood × year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" pct_owner_occupied,\n",
|
||
" pct_renter_occupied,\n",
|
||
" income_quintile,\n",
|
||
" total_rental_units,\n",
|
||
" average_dwelling_value\n",
|
||
"FROM public_marts.mart_neighbourhood_housing\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
|
||
" AND pct_owner_occupied IS NOT NULL\n",
|
||
"ORDER BY pct_renter_occupied DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods with tenure data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter to most recent year with tenure data\n",
|
||
"2. Melt owner/renter columns for stacked bar\n",
|
||
"3. Sort by renter percentage (highest first)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Prepare for stacked bar\n",
|
||
"df_stacked = df.melt(\n",
|
||
" id_vars=['neighbourhood_name', 'income_quintile'],\n",
|
||
" value_vars=['pct_owner_occupied', 'pct_renter_occupied'],\n",
|
||
" var_name='tenure_type',\n",
|
||
" value_name='percentage'\n",
|
||
")\n",
|
||
"\n",
|
||
"df_stacked['tenure_type'] = df_stacked['tenure_type'].map({\n",
|
||
" 'pct_owner_occupied': 'Owner',\n",
|
||
" 'pct_renter_occupied': 'Renter'\n",
|
||
"})\n",
|
||
"\n",
|
||
"data = df_stacked.to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(\"Highest Renter Neighbourhoods:\")\n",
|
||
"df[['neighbourhood_name', 'pct_renter_occupied', 'pct_owner_occupied', 'income_quintile']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `x_column`: 'neighbourhood_name'\n",
|
||
"- `value_column`: 'percentage'\n",
|
||
"- `category_column`: 'tenure_type'\n",
|
||
"- `show_percentages`: True"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||
"\n",
|
||
"# Show top 20 by renter percentage\n",
|
||
"top_20_names = df.head(20)['neighbourhood_name'].tolist()\n",
|
||
"data_filtered = [d for d in data if d['neighbourhood_name'] in top_20_names]\n",
|
||
"\n",
|
||
"fig = create_stacked_bar(\n",
|
||
" data=data_filtered,\n",
|
||
" x_column='neighbourhood_name',\n",
|
||
" value_column='percentage',\n",
|
||
" category_column='tenure_type',\n",
|
||
" title='Housing Tenure Mix - Top 20 Renter Neighbourhoods',\n",
|
||
" color_map={'Owner': '#4CAF50', 'Renter': '#2196F3'},\n",
|
||
" show_percentages=True,\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### City-Wide Distribution"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# City-wide averages\n",
|
||
"print(f\"City Average Owner-Occupied: {df['pct_owner_occupied'].mean():.1f}%\")\n",
|
||
"print(f\"City Average Renter-Occupied: {df['pct_renter_occupied'].mean():.1f}%\")\n",
|
||
"\n",
|
||
"# By income quintile\n",
|
||
"print(\"\\nTenure by Income Quintile:\")\n",
|
||
"df.groupby('income_quintile')[['pct_owner_occupied', 'pct_renter_occupied']].mean().round(1)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|