dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
175 lines
4.4 KiB
Plaintext
175 lines
4.4 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Affordability Index Choropleth Map\n",
|
||
"\n",
|
||
"Displays housing affordability across Toronto's 158 neighbourhoods. Index of 100 = city average."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_housing` | neighbourhood × year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_id,\n",
|
||
" neighbourhood_name,\n",
|
||
" geometry,\n",
|
||
" year,\n",
|
||
" affordability_index,\n",
|
||
" rent_to_income_pct,\n",
|
||
" avg_rent_2bed,\n",
|
||
" median_household_income,\n",
|
||
" is_affordable\n",
|
||
"FROM public_marts.mart_neighbourhood_housing\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
|
||
"ORDER BY affordability_index ASC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter to most recent year\n",
|
||
"2. Convert geometry to GeoJSON\n",
|
||
"3. Lower index = more affordable (inverted for visualization clarity)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import geopandas as gpd\n",
|
||
"import json\n",
|
||
"\n",
|
||
"gdf = gpd.GeoDataFrame(\n",
|
||
" df,\n",
|
||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||
" crs='EPSG:4326'\n",
|
||
")\n",
|
||
"\n",
|
||
"geojson = json.loads(gdf.to_json())\n",
|
||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'affordability_index', 'rent_to_income_pct', 'avg_rent_2bed', 'is_affordable']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `color_column`: 'affordability_index'\n",
|
||
"- `color_scale`: 'RdYlGn_r' (reversed: green=affordable, red=expensive)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||
"\n",
|
||
"fig = create_choropleth_figure(\n",
|
||
" geojson=geojson,\n",
|
||
" data=data,\n",
|
||
" location_key='neighbourhood_id',\n",
|
||
" color_column='affordability_index',\n",
|
||
" hover_data=['neighbourhood_name', 'rent_to_income_pct', 'avg_rent_2bed'],\n",
|
||
" color_scale='RdYlGn_r', # Reversed: lower index (affordable) = green\n",
|
||
" title='Toronto Housing Affordability Index',\n",
|
||
" zoom=10,\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Index Interpretation\n",
|
||
"\n",
|
||
"| Index | Meaning |\n",
|
||
"|-------|--------|\n",
|
||
"| < 100 | More affordable than city average |\n",
|
||
"| = 100 | City average affordability |\n",
|
||
"| > 100 | Less affordable than city average |\n",
|
||
"\n",
|
||
"Affordability calculated as: `rent_to_income_pct / city_avg_rent_to_income * 100`"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|