dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
179 lines
4.5 KiB
Plaintext
179 lines
4.5 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Crime Type Breakdown Bar Chart\n",
|
||
"\n",
|
||
"Stacked bar chart showing crime composition by Major Crime Indicator (MCI) categories."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" assault_count,\n",
|
||
" auto_theft_count,\n",
|
||
" break_enter_count,\n",
|
||
" robbery_count,\n",
|
||
" theft_over_count,\n",
|
||
" homicide_count,\n",
|
||
" total_incidents,\n",
|
||
" crime_rate_per_100k\n",
|
||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
|
||
"ORDER BY total_incidents DESC\n",
|
||
"LIMIT 15\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded top {len(df)} neighbourhoods by crime volume\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Select top 15 neighbourhoods by total incidents\n",
|
||
"2. Melt crime type columns into rows\n",
|
||
"3. Pass to stacked bar figure factory"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_melted = df.melt(\n",
|
||
" id_vars=['neighbourhood_name', 'total_incidents'],\n",
|
||
" value_vars=['assault_count', 'auto_theft_count', 'break_enter_count', \n",
|
||
" 'robbery_count', 'theft_over_count', 'homicide_count'],\n",
|
||
" var_name='crime_type',\n",
|
||
" value_name='count'\n",
|
||
")\n",
|
||
"\n",
|
||
"# Clean labels\n",
|
||
"df_melted['crime_type'] = df_melted['crime_type'].str.replace('_count', '').str.replace('_', ' ').str.title()\n",
|
||
"\n",
|
||
"data = df_melted.to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'assault_count', 'auto_theft_count', 'break_enter_count', 'total_incidents']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_stacked_bar` from `portfolio_app.figures.bar_charts`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.bar_charts import create_stacked_bar\n",
|
||
"\n",
|
||
"fig = create_stacked_bar(\n",
|
||
" data=data,\n",
|
||
" x_column='neighbourhood_name',\n",
|
||
" value_column='count',\n",
|
||
" category_column='crime_type',\n",
|
||
" title='Crime Type Breakdown - Top 15 Neighbourhoods',\n",
|
||
" color_map={\n",
|
||
" 'Assault': '#d62728',\n",
|
||
" 'Auto Theft': '#ff7f0e',\n",
|
||
" 'Break Enter': '#9467bd',\n",
|
||
" 'Robbery': '#8c564b',\n",
|
||
" 'Theft Over': '#e377c2',\n",
|
||
" 'Homicide': '#1f77b4'\n",
|
||
" },\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### MCI Categories\n",
|
||
"\n",
|
||
"| Category | Description |\n",
|
||
"|----------|------------|\n",
|
||
"| Assault | Physical attacks |\n",
|
||
"| Auto Theft | Vehicle theft |\n",
|
||
"| Break & Enter | Burglary |\n",
|
||
"| Robbery | Theft with force/threat |\n",
|
||
"| Theft Over | Theft > $5,000 |\n",
|
||
"| Homicide | Murder/manslaughter |"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|