Phase 6 - Jupyter Notebooks (15 total): - Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter - Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar - Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line - Demographics tab: income_choropleth, age_distribution, population_density_bar - Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar Phase 7 - Documentation: - Updated CLAUDE.md with Sprint 9 completion status - Added notebooks directory to application structure - Expanded figures directory listing Closes #71, #72, #73, #74, #75, #76, #77 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
184 lines
4.5 KiB
Plaintext
184 lines
4.5 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Rent Trend Line Chart\n",
|
||
"\n",
|
||
"Shows 5-year rental price trends across Toronto neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_housing` | neighbourhood × year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"# City-wide average rent by year\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" year,\n",
|
||
" AVG(avg_rent_bachelor) as avg_rent_bachelor,\n",
|
||
" AVG(avg_rent_1bed) as avg_rent_1bed,\n",
|
||
" AVG(avg_rent_2bed) as avg_rent_2bed,\n",
|
||
" AVG(avg_rent_3bed) as avg_rent_3bed,\n",
|
||
" AVG(rent_yoy_change_pct) as avg_yoy_change\n",
|
||
"FROM mart_neighbourhood_housing\n",
|
||
"WHERE year >= (SELECT MAX(year) - 5 FROM mart_neighbourhood_housing)\n",
|
||
"GROUP BY year\n",
|
||
"ORDER BY year\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} years of rent data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Aggregate rent by year (city-wide average)\n",
|
||
"2. Convert year to datetime for proper x-axis\n",
|
||
"3. Reshape for multi-line chart by bedroom type"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Create date column from year\n",
|
||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||
"\n",
|
||
"# Melt for multi-line chart\n",
|
||
"df_melted = df.melt(\n",
|
||
" id_vars=['year', 'date'],\n",
|
||
" value_vars=['avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed'],\n",
|
||
" var_name='bedroom_type',\n",
|
||
" value_name='avg_rent'\n",
|
||
")\n",
|
||
"\n",
|
||
"# Clean labels\n",
|
||
"df_melted['bedroom_type'] = df_melted['bedroom_type'].map({\n",
|
||
" 'avg_rent_bachelor': 'Bachelor',\n",
|
||
" 'avg_rent_1bed': '1 Bedroom',\n",
|
||
" 'avg_rent_2bed': '2 Bedroom',\n",
|
||
" 'avg_rent_3bed': '3 Bedroom'\n",
|
||
"})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['year', 'avg_rent_bachelor', 'avg_rent_1bed', 'avg_rent_2bed', 'avg_rent_3bed', 'avg_yoy_change']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_price_time_series` from `portfolio_app.figures.time_series`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `date_column`: 'date'\n",
|
||
"- `price_column`: 'avg_rent'\n",
|
||
"- `group_column`: 'bedroom_type' (for multi-line)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||
"\n",
|
||
"data = df_melted.to_dict('records')\n",
|
||
"\n",
|
||
"fig = create_price_time_series(\n",
|
||
" data=data,\n",
|
||
" date_column='date',\n",
|
||
" price_column='avg_rent',\n",
|
||
" group_column='bedroom_type',\n",
|
||
" title='Toronto Average Rent Trend (5 Years)',\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### YoY Change Analysis"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Show year-over-year changes\n",
|
||
"print(\"Year-over-Year Rent Change (%)\")\n",
|
||
"df[['year', 'avg_yoy_change']].dropna()"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|