Files
personal-portfolio/notebooks/amenities/amenity_radar.ipynb
lmiranda 941305e71c
Some checks failed
CI / lint-and-test (push) Has been cancelled
fix: Update amenity_radar notebook to use correct radar API
Use create_comparison_radar instead of create_radar_figure with
incorrect parameters.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:39:20 -05:00

146 lines
4.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amenity Radar Chart\n",
"\n",
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" parks_index,\n",
" schools_index,\n",
" transit_index,\n",
" amenity_index,\n",
" amenity_tier\n",
"FROM public_marts.mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
"ORDER BY amenity_index DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
"2. Reshape for radar chart format"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Select representative neighbourhoods\n",
"top_5 = df.head(5)\n",
"bottom_5 = df.tail(5)\n",
"\n",
"# Prepare radar data\n",
"categories = ['Parks', 'Schools', 'Transit']\n",
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_radar` from `portfolio_app.figures.radar`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": "import sys\nsys.path.insert(0, '../..')\n\nfrom portfolio_app.figures.radar import create_comparison_radar\n\n# Compare top neighbourhood vs city average (100)\ntop_hood = top_5.iloc[0]\nmetrics = ['parks_index', 'schools_index', 'transit_index']\n\nfig = create_comparison_radar(\n selected_data=top_hood.to_dict(),\n average_data={'parks_index': 100, 'schools_index': 100, 'transit_index': 100},\n metrics=metrics,\n selected_name=top_hood['neighbourhood_name'],\n average_name='City Average',\n title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n)\n\nfig.show()"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Index Interpretation\n",
"\n",
"| Value | Meaning |\n",
"|-------|--------|\n",
"| < 100 | Below city average |\n",
"| = 100 | City average |\n",
"| > 100 | Above city average |"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}