Files
personal-portfolio/notebooks/README.md
l3ocho 62d1a52eed
Some checks failed
CI / lint-and-test (pull_request) Has been cancelled
refactor: multi-dashboard structural migration
- Rename dbt project from toronto_housing to portfolio
- Restructure dbt models into domain subdirectories:
  - shared/ for cross-domain dimensions (dim_time)
  - staging/toronto/, intermediate/toronto/, marts/toronto/
- Update SQLAlchemy models for raw_toronto schema
- Add explicit cross-schema FK relationships for FactRentals
- Namespace figure factories under figures/toronto/
- Namespace notebooks under notebooks/toronto/
- Update Makefile with domain-specific targets and env loading
- Update all documentation for multi-dashboard structure

This enables adding new dashboard projects (e.g., /football, /energy)
without structural conflicts or naming collisions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-01 19:08:20 -05:00

71 lines
2.1 KiB
Markdown

# Dashboard Documentation Notebooks
Documentation notebooks organized by dashboard project. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
## Directory Structure
```
notebooks/
├── README.md # This file
└── toronto/ # Toronto Neighbourhood Dashboard
├── overview/ # Overview tab visualizations
├── housing/ # Housing tab visualizations
├── safety/ # Safety tab visualizations
├── demographics/ # Demographics tab visualizations
└── amenities/ # Amenities tab visualizations
```
## Notebook Template
Each notebook follows a standard two-section structure:
### Section 1: Data Reference
Documents the data pipeline:
- **Source Tables**: List of dbt marts/tables used
- **SQL Query**: The exact query to fetch data
- **Transformation Steps**: Any pandas/python transformations
- **Sample Output**: First 10 rows of the result
### Section 2: Data Visualization
Documents the figure creation:
- **Figure Factory**: Import from `portfolio_app.figures`
- **Parameters**: Key configuration options
- **Rendered Output**: The actual visualization
## Available Figure Factories
| Factory | Module | Use Case |
|---------|--------|----------|
| `create_choropleth` | `figures.choropleth` | Map visualizations |
| `create_ranking_bar` | `figures.bar_charts` | Top/bottom N rankings |
| `create_stacked_bar` | `figures.bar_charts` | Category breakdowns |
| `create_scatter` | `figures.scatter` | Correlation plots |
| `create_radar` | `figures.radar` | Multi-metric comparisons |
| `create_age_pyramid` | `figures.demographics` | Age distributions |
| `create_time_series` | `figures.time_series` | Trend lines |
## Usage
1. Start Jupyter from project root:
```bash
jupyter notebook notebooks/
```
2. Ensure database is running:
```bash
make docker-up
```
3. Each notebook is self-contained - run all cells top to bottom.
## Notebook Naming Convention
`{metric}_{chart_type}.ipynb`
Examples:
- `livability_choropleth.ipynb`
- `crime_trend_line.ipynb`
- `age_pyramid.ipynb`