Files
personal-portfolio/notebooks/README.md
lmiranda 1eba95d4d1 docs: Complete Phase 6 notebooks and Phase 7 documentation review
Phase 6 - Jupyter Notebooks (15 total):
- Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter
- Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar
- Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line
- Demographics tab: income_choropleth, age_distribution, population_density_bar
- Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar

Phase 7 - Documentation:
- Updated CLAUDE.md with Sprint 9 completion status
- Added notebooks directory to application structure
- Expanded figures directory listing

Closes #71, #72, #73, #74, #75, #76, #77

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 12:10:46 -05:00

2.1 KiB

Toronto Neighbourhood Dashboard - Notebooks

Documentation notebooks for the Toronto Neighbourhood Dashboard visualizations. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.

Directory Structure

notebooks/
├── README.md              # This file
├── overview/              # Overview tab visualizations
├── housing/               # Housing tab visualizations
├── safety/                # Safety tab visualizations
├── demographics/          # Demographics tab visualizations
└── amenities/             # Amenities tab visualizations

Notebook Template

Each notebook follows a standard two-section structure:

Section 1: Data Reference

Documents the data pipeline:

  • Source Tables: List of dbt marts/tables used
  • SQL Query: The exact query to fetch data
  • Transformation Steps: Any pandas/python transformations
  • Sample Output: First 10 rows of the result

Section 2: Data Visualization

Documents the figure creation:

  • Figure Factory: Import from portfolio_app.figures
  • Parameters: Key configuration options
  • Rendered Output: The actual visualization

Available Figure Factories

Factory Module Use Case
create_choropleth figures.choropleth Map visualizations
create_ranking_bar figures.bar_charts Top/bottom N rankings
create_stacked_bar figures.bar_charts Category breakdowns
create_scatter figures.scatter Correlation plots
create_radar figures.radar Multi-metric comparisons
create_age_pyramid figures.demographics Age distributions
create_time_series figures.time_series Trend lines

Usage

  1. Start Jupyter from project root:

    jupyter notebook notebooks/
    
  2. Ensure database is running:

    make docker-up
    
  3. Each notebook is self-contained - run all cells top to bottom.

Notebook Naming Convention

{metric}_{chart_type}.ipynb

Examples:

  • livability_choropleth.ipynb
  • crime_trend_line.ipynb
  • age_pyramid.ipynb