Phase 6 - Jupyter Notebooks (15 total): - Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter - Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar - Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line - Demographics tab: income_choropleth, age_distribution, population_density_bar - Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar Phase 7 - Documentation: - Updated CLAUDE.md with Sprint 9 completion status - Added notebooks directory to application structure - Expanded figures directory listing Closes #71, #72, #73, #74, #75, #76, #77 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
174 lines
4.1 KiB
Plaintext
174 lines
4.1 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Median Income Choropleth Map\n",
|
||
"\n",
|
||
"Displays median household income across Toronto's 158 neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_id,\n",
|
||
" neighbourhood_name,\n",
|
||
" geometry,\n",
|
||
" year,\n",
|
||
" median_household_income,\n",
|
||
" income_index,\n",
|
||
" income_quintile,\n",
|
||
" population,\n",
|
||
" unemployment_rate\n",
|
||
"FROM mart_neighbourhood_demographics\n",
|
||
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_demographics)\n",
|
||
"ORDER BY median_household_income DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter to most recent census year\n",
|
||
"2. Convert geometry to GeoJSON\n",
|
||
"3. Scale income to thousands for readability"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import geopandas as gpd\n",
|
||
"import json\n",
|
||
"\n",
|
||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||
"\n",
|
||
"gdf = gpd.GeoDataFrame(\n",
|
||
" df,\n",
|
||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||
" crs='EPSG:4326'\n",
|
||
")\n",
|
||
"\n",
|
||
"geojson = json.loads(gdf.to_json())\n",
|
||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'median_household_income', 'income_index', 'income_quintile']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||
"\n",
|
||
"fig = create_choropleth_figure(\n",
|
||
" geojson=geojson,\n",
|
||
" data=data,\n",
|
||
" location_key='neighbourhood_id',\n",
|
||
" color_column='median_household_income',\n",
|
||
" hover_data=['neighbourhood_name', 'income_index', 'income_quintile'],\n",
|
||
" color_scale='Viridis',\n",
|
||
" title='Toronto Median Household Income by Neighbourhood',\n",
|
||
" zoom=10,\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Income Quintile Distribution"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df.groupby('income_quintile')['median_household_income'].agg(['count', 'mean', 'min', 'max']).round(0)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|