dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
174 lines
4.2 KiB
Plaintext
174 lines
4.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Age Distribution Analysis\n",
|
||
"\n",
|
||
"Compares median age and age index across Toronto neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" median_age,\n",
|
||
" age_index,\n",
|
||
" city_avg_age,\n",
|
||
" population,\n",
|
||
" income_quintile,\n",
|
||
" pct_renter_occupied\n",
|
||
"FROM public_marts.mart_neighbourhood_demographics\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
|
||
" AND median_age IS NOT NULL\n",
|
||
"ORDER BY median_age DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods with age data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter to most recent census year\n",
|
||
"2. Calculate deviation from city average\n",
|
||
"3. Classify as younger/older than average"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"city_avg = df['city_avg_age'].iloc[0]\n",
|
||
"df['age_category'] = df['median_age'].apply(\n",
|
||
" lambda x: 'Younger' if x < city_avg else 'Older'\n",
|
||
")\n",
|
||
"df['age_deviation'] = df['median_age'] - city_avg\n",
|
||
"\n",
|
||
"data = df.to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(f\"City Average Age: {city_avg:.1f}\")\n",
|
||
"print(\"\\nYoungest Neighbourhoods:\")\n",
|
||
"display(df.tail(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])\n",
|
||
"print(\"\\nOldest Neighbourhoods:\")\n",
|
||
"display(df.head(5)[['neighbourhood_name', 'median_age', 'age_index', 'pct_renter_occupied']])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||
"\n",
|
||
"fig = create_ranking_bar(\n",
|
||
" data=data,\n",
|
||
" name_column='neighbourhood_name',\n",
|
||
" value_column='median_age',\n",
|
||
" title='Youngest & Oldest Neighbourhoods (Median Age)',\n",
|
||
" top_n=10,\n",
|
||
" bottom_n=10,\n",
|
||
" color_top='#FF9800', # Orange for older\n",
|
||
" color_bottom='#2196F3', # Blue for younger\n",
|
||
" value_format='.1f',\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Age vs Income Correlation"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Age by income quintile\n",
|
||
"print(\"Median Age by Income Quintile:\")\n",
|
||
"df.groupby('income_quintile')['median_age'].mean().round(1)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|