dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
184 lines
5.0 KiB
Plaintext
184 lines
5.0 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Income vs Safety Scatter Plot\n",
|
||
"\n",
|
||
"Explores the correlation between median household income and safety score across Toronto neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" median_household_income,\n",
|
||
" safety_score,\n",
|
||
" population,\n",
|
||
" livability_score,\n",
|
||
" crime_rate_per_100k\n",
|
||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||
" AND median_household_income IS NOT NULL\n",
|
||
" AND safety_score IS NOT NULL\n",
|
||
"ORDER BY median_household_income DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods with income and safety data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter out null values for income and safety\n",
|
||
"2. Optionally scale income to thousands for readability\n",
|
||
"3. Pass to scatter figure factory with optional trendline"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Scale income to thousands for better axis readability\n",
|
||
"df['income_thousands'] = df['median_household_income'] / 1000\n",
|
||
"\n",
|
||
"# Prepare data for figure factory\n",
|
||
"data = df.to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'median_household_income', 'safety_score', 'crime_rate_per_100k']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_scatter_figure` from `portfolio_app.figures.scatter`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `x_column`: 'income_thousands' (median household income in $K)\n",
|
||
"- `y_column`: 'safety_score' (0-100 percentile rank)\n",
|
||
"- `name_column`: 'neighbourhood_name' (hover label)\n",
|
||
"- `size_column`: 'population' (optional, bubble size)\n",
|
||
"- `trendline`: True (adds OLS regression line)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.scatter import create_scatter_figure\n",
|
||
"\n",
|
||
"fig = create_scatter_figure(\n",
|
||
" data=data,\n",
|
||
" x_column='income_thousands',\n",
|
||
" y_column='safety_score',\n",
|
||
" name_column='neighbourhood_name',\n",
|
||
" size_column='population',\n",
|
||
" title='Income vs Safety by Neighbourhood',\n",
|
||
" x_title='Median Household Income ($K)',\n",
|
||
" y_title='Safety Score (0-100)',\n",
|
||
" trendline=True,\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Interpretation\n",
|
||
"\n",
|
||
"This scatter plot reveals the relationship between income and safety:\n",
|
||
"\n",
|
||
"- **Positive correlation**: Higher income neighbourhoods tend to have higher safety scores\n",
|
||
"- **Bubble size**: Represents population (larger = more people)\n",
|
||
"- **Trendline**: Orange dashed line shows the overall trend\n",
|
||
"- **Outliers**: Neighbourhoods far from the trendline are interesting cases\n",
|
||
" - Above line: Safer than income would predict\n",
|
||
" - Below line: Less safe than income would predict"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Calculate correlation coefficient\n",
|
||
"correlation = df['median_household_income'].corr(df['safety_score'])\n",
|
||
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|