dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
185 lines
4.8 KiB
Plaintext
185 lines
4.8 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Livability Score Choropleth Map\n",
|
||
"\n",
|
||
"Displays neighbourhood livability scores on an interactive map of Toronto's 158 neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_overview` | neighbourhood × year | livability_score, safety_score, affordability_score, amenity_score, geometry |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"# Connect to database\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_id,\n",
|
||
" neighbourhood_name,\n",
|
||
" geometry,\n",
|
||
" year,\n",
|
||
" livability_score,\n",
|
||
" safety_score,\n",
|
||
" affordability_score,\n",
|
||
" amenity_score,\n",
|
||
" population,\n",
|
||
" median_household_income\n",
|
||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||
"ORDER BY livability_score DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Filter to most recent year of data\n",
|
||
"2. Extract GeoJSON from PostGIS geometry column\n",
|
||
"3. Pass to choropleth figure factory"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Transform geometry to GeoJSON\n",
|
||
"import geopandas as gpd\n",
|
||
"import json\n",
|
||
"\n",
|
||
"# Convert WKB geometry to GeoDataFrame\n",
|
||
"gdf = gpd.GeoDataFrame(\n",
|
||
" df,\n",
|
||
" geometry=gpd.GeoSeries.from_wkb(df['geometry']),\n",
|
||
" crs='EPSG:4326'\n",
|
||
")\n",
|
||
"\n",
|
||
"# Create GeoJSON FeatureCollection\n",
|
||
"geojson = json.loads(gdf.to_json())\n",
|
||
"\n",
|
||
"# Prepare data for figure factory\n",
|
||
"data = df.drop(columns=['geometry']).to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'livability_score', 'safety_score', 'affordability_score', 'amenity_score']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_choropleth_figure` from `portfolio_app.figures.choropleth`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
|
||
"- `data`: List of dicts with neighbourhood_id and scores\n",
|
||
"- `location_key`: 'neighbourhood_id'\n",
|
||
"- `color_column`: 'livability_score' (or safety_score, etc.)\n",
|
||
"- `color_scale`: 'RdYlGn' (red=low, yellow=mid, green=high)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.choropleth import create_choropleth_figure\n",
|
||
"\n",
|
||
"fig = create_choropleth_figure(\n",
|
||
" geojson=geojson,\n",
|
||
" data=data,\n",
|
||
" location_key='neighbourhood_id',\n",
|
||
" color_column='livability_score',\n",
|
||
" hover_data=['neighbourhood_name', 'safety_score', 'affordability_score', 'amenity_score'],\n",
|
||
" color_scale='RdYlGn',\n",
|
||
" title='Toronto Neighbourhood Livability Score',\n",
|
||
" zoom=10,\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Score Components\n",
|
||
"\n",
|
||
"The livability score is a weighted composite:\n",
|
||
"\n",
|
||
"| Component | Weight | Source |\n",
|
||
"|-----------|--------|--------|\n",
|
||
"| Safety | 30% | Inverse of crime rate per 100K |\n",
|
||
"| Affordability | 40% | Inverse of rent-to-income ratio |\n",
|
||
"| Amenities | 30% | Amenities per 1,000 residents |"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|