Files
py-wikijs/docs/IMPROVEMENT_PLAN.md
Claude 9775d02699 Add comprehensive SDK improvement plan for Phases 2-4
This commit introduces a detailed improvement plan that outlines the
strategic evolution of the Wiki.js Python SDK from v0.1.0 (MVP) to
v1.0.0 (Enterprise-grade).

Key additions:

1. **IMPROVEMENT_PLAN.md** - Comprehensive 47-page specification
   - Phase 2: Essential Features + Async Support (v0.2.0)
     * Async/await implementation with aiohttp
     * API expansion: Users, Groups, Assets
     * Auto-pagination support
     * Dual sync/async client architecture

   - Phase 3: Reliability & Performance (v0.3.0)
     * Intelligent caching layer (Memory, Redis, File)
     * GraphQL batch operations
     * Rate limiting & throttling
     * Circuit breaker & enhanced retry logic

   - Phase 4: Advanced Features (v1.0.0)
     * Advanced CLI with rich formatting
     * Plugin architecture for extensibility
     * Webhook support for event handling

2. **CLAUDE.md updates**
   - Updated phase definitions with detailed task breakdowns
   - Added Phase 2 implementation steps and quality gates
   - Included success criteria and time estimates
   - Enhanced development guidelines for Phase 2
   - Updated current focus from Phase 1 to Phase 2

Implementation strategy:
- Test-driven development with >95% coverage
- Documentation alongside code development
- Quality gates at every checkpoint
- Backward compatibility guaranteed
- Performance benchmarks for all features

Timeline: ~17 weeks total (4 months to v1.0.0)

This plan ensures we deliver production-ready, enterprise-grade
features while maintaining the highest quality standards throughout.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-22 17:59:48 +00:00

34 KiB

Wiki.js Python SDK - Comprehensive Improvement Plan

Version: 2.0 Created: 2025-10-22 Status: Active Development Current Version: v0.1.0 (Phase 1 Complete)


📋 Executive Summary

This document outlines the strategic improvements to evolve the Wiki.js Python SDK from a functional MVP to an enterprise-grade solution. The plan emphasizes:

  • Quality First: Every feature includes comprehensive tests and documentation
  • Incremental Delivery: Each phase delivers measurable value
  • Backward Compatibility: No breaking changes without major version bump
  • Developer Experience: Intuitive APIs with clear error messages

Key Improvements Overview

Improvement Phase Impact Complexity
Async/Await Support 2 HIGH MEDIUM
API Expansion (Users, Groups, Assets) 2 HIGH MEDIUM
Intelligent Caching Layer 3 HIGH MEDIUM
Batch Operations (GraphQL) 3 HIGH LOW
Rate Limiting & Throttling 3 MEDIUM LOW
Circuit Breaker & Retry Logic 3 MEDIUM MEDIUM
Auto-Pagination Iterators 2 MEDIUM LOW
Advanced CLI 4 MEDIUM HIGH
Plugin Architecture 4 LOW HIGH

🎯 Phase 2: Essential Features + Async Support

Target Duration: 3-4 weeks Target Version: v0.2.0 Goal: Complete API coverage + modern async support

2.1 Async/Await Implementation

2.1.1 Dual Client Architecture

Objective: Provide both sync and async clients without breaking existing code

Implementation Strategy:

# Current sync client (unchanged)
from wikijs import WikiJSClient

# New async client
from wikijs.aio import AsyncWikiJSClient

# Both share same interface
client = WikiJSClient(url, auth)
async_client = AsyncWikiJSClient(url, auth)

Tasks:

  1. Create wikijs/aio/ module structure

    • wikijs/aio/__init__.py - Async exports
    • wikijs/aio/client.py - AsyncWikiJSClient implementation
    • wikijs/aio/endpoints.py - Async endpoint handlers
  2. Implement AsyncWikiJSClient

    • Use aiohttp.ClientSession instead of requests.Session
    • Async context manager support (async with)
    • Async methods: _arequest(), _ahandle_response()
    • Connection pooling configuration
  3. Create async endpoint classes

    • AsyncPagesEndpoint with all CRUD operations
    • Maintain same method signatures (add async/await)
    • Reuse models and exceptions from sync client
  4. Add async authentication handlers

    • AsyncAPIKeyAuth - Simple header injection
    • AsyncJWTAuth - Async token refresh logic

Testing Requirements:

  • Unit tests for AsyncWikiJSClient (>95% coverage)
  • Unit tests for async endpoints (>95% coverage)
  • Integration tests with real Wiki.js instance
  • Concurrent request tests (100+ simultaneous requests)
  • Performance benchmarks (async vs sync)
  • Error handling tests (timeouts, connection errors)

Documentation Requirements:

  • docs/async_usage.md - Comprehensive async guide
  • Update README.md with async examples
  • Update API reference with async methods
  • Add async examples to examples/async_basic_usage.py
  • Migration guide from sync to async

Success Criteria:

  • Async client achieves >3x throughput vs sync (100 concurrent requests)
  • All sync features available in async variant
  • Zero breaking changes to existing sync API
  • Documentation covers 100% of async functionality
  • All tests pass with >95% coverage

Estimated Effort: 12-15 hours, 40-50 AI sessions


2.1.2 Async Context Managers & Resource Cleanup

Objective: Proper async resource management

Implementation:

# Context manager pattern
async with AsyncWikiJSClient(url, auth) as client:
    page = await client.pages.get(123)
    # Automatic cleanup on exit

# Manual management
client = AsyncWikiJSClient(url, auth)
try:
    page = await client.pages.get(123)
finally:
    await client.close()

Tasks:

  1. Implement __aenter__ and __aexit__ methods
  2. Proper session cleanup in async context
  3. Connection pool lifecycle management
  4. Graceful shutdown handling

Testing Requirements:

  • Resource leak tests (ensure sessions close)
  • Exception handling in context managers
  • Concurrent context manager usage

Estimated Effort: 3-4 hours, 10-15 AI sessions


2.2 API Expansion

2.2.1 Users API Implementation

Objective: Complete user management capabilities

GraphQL Queries to Implement:

# List users
query { users { list { id, name, email, isActive } } }

# Get user
query($id: Int!) { users { single(id: $id) { id, name, email, groups } } }

# Create user
mutation($email: String!, $name: String!) {
  users { create(email: $email, name: $name) { responseResult { succeeded } } }
}

# Update user
mutation($id: Int!, $name: String!) {
  users { update(id: $id, name: $name) { responseResult { succeeded } } }
}

# Delete user
mutation($id: Int!) { users { delete(id: $id) { responseResult { succeeded } } }

File Structure:

wikijs/endpoints/users.py       # Sync implementation
wikijs/aio/endpoints/users.py   # Async implementation
wikijs/models/user.py           # User data models
tests/endpoints/test_users.py   # Sync tests
tests/aio/test_users.py         # Async tests

Tasks:

  1. Create User models (wikijs/models/user.py)

    • User - Complete user data model
    • UserGroup - User group membership
    • UserPermissions - Permission model
  2. Implement UsersEndpoint (wikijs/endpoints/users.py)

    • list(limit, offset, filter) - List users with pagination
    • get(user_id) - Get single user by ID
    • create(email, name, password, groups) - Create new user
    • update(user_id, **kwargs) - Update user
    • delete(user_id) - Delete user
    • search(query) - Search users by name/email
  3. Implement AsyncUsersEndpoint (async variant)

  4. Add to client - Register in WikiJSClient.users

Testing Requirements:

  • Unit tests for UsersEndpoint (>95% coverage)
  • Unit tests for User models
  • Integration tests (CRUD operations)
  • Permission validation tests
  • Edge cases (invalid emails, duplicate users)

Documentation Requirements:

  • docs/api/users.md - Complete Users API reference
  • Usage examples in examples/user_management.py
  • Update main README with Users API section

Success Criteria:

  • All CRUD operations functional
  • Model validation prevents invalid data
  • Error handling provides clear feedback
  • Tests achieve >95% coverage

Estimated Effort: 8-10 hours, 30-35 AI sessions


2.2.2 Groups API Implementation

Objective: Group and permission management

Key Operations:

# Group management
groups = client.groups.list()
group = client.groups.get(group_id)
new_group = client.groups.create(name="Editors", permissions=["read", "write"])
client.groups.update(group_id, name="Senior Editors")
client.groups.delete(group_id)

# Member management
client.groups.add_user(group_id, user_id)
client.groups.remove_user(group_id, user_id)
members = client.groups.list_members(group_id)

Tasks:

  1. Create Group models (wikijs/models/group.py)
  2. Implement GroupsEndpoint (wikijs/endpoints/groups.py)
  3. Implement AsyncGroupsEndpoint (async variant)
  4. Add permission validation logic

Testing Requirements:

  • Unit tests for GroupsEndpoint (>95% coverage)
  • Integration tests for group-user relationships
  • Permission inheritance tests

Documentation Requirements:

  • docs/api/groups.md - Groups API reference
  • Examples in examples/group_management.py

Success Criteria:

  • Group CRUD operations work correctly
  • User-group relationships properly managed
  • Permission validation prevents invalid operations

Estimated Effort: 6-8 hours, 25-30 AI sessions


2.2.3 Assets API Implementation

Objective: File upload and asset management

Key Operations:

# Upload asset
asset = client.assets.upload(
    file_path="/path/to/image.png",
    folder="/images",
    optimize=True
)

# List assets
assets = client.assets.list(folder="/images", kind="image")

# Get asset info
asset = client.assets.get(asset_id)

# Delete asset
client.assets.delete(asset_id)

# Download asset
content = client.assets.download(asset_id)

Tasks:

  1. Create Asset models (wikijs/models/asset.py)
  2. Implement AssetsEndpoint with multipart upload
  3. Handle large file uploads (streaming)
  4. Async variant for concurrent uploads

Testing Requirements:

  • Unit tests for AssetsEndpoint
  • File upload tests (various formats)
  • Large file handling tests (>10MB)
  • Concurrent upload tests (async)

Documentation Requirements:

  • docs/api/assets.md - Assets API reference
  • Examples in examples/asset_upload.py

Success Criteria:

  • Support common file formats (images, PDFs, docs)
  • Large file uploads work reliably
  • Progress tracking for uploads

Estimated Effort: 8-10 hours, 30-35 AI sessions


2.2.4 Auto-Pagination Support

Objective: Pythonic iteration over paginated results

Implementation:

# Current (manual pagination)
offset = 0
all_pages = []
while True:
    batch = client.pages.list(limit=50, offset=offset)
    if not batch:
        break
    all_pages.extend(batch)
    offset += 50

# New (auto-pagination)
all_pages = list(client.pages.iter_all())

# Or iterate lazily
for page in client.pages.iter_all(batch_size=50):
    process_page(page)

Tasks:

  1. Add iter_all() method to all list endpoints
  2. Implement lazy iteration with yield
  3. Support custom batch sizes
  4. Async iterator support (async for)

Testing Requirements:

  • Iterator tests for each endpoint
  • Large dataset tests (1000+ items)
  • Memory efficiency tests
  • Async iterator tests

Success Criteria:

  • Memory efficient (doesn't load all at once)
  • Works with all paginated endpoints
  • Async variant available

Estimated Effort: 4-5 hours, 15-20 AI sessions


Phase 2 Quality Gates

Code Quality:

  • All code follows Black formatting
  • Type hints on 100% of public APIs
  • Docstrings on 100% of public methods
  • MyPy strict mode passes
  • Flake8 with no errors
  • Bandit security scan passes

Testing:

  • Overall test coverage >90%
  • All integration tests pass
  • Performance benchmarks established
  • Async performance >3x sync for 100 concurrent requests
  • No memory leaks detected

Documentation:

  • All new APIs documented in docs/api/
  • Examples for each major feature
  • Migration guides updated
  • CHANGELOG.md updated with all changes
  • README.md updated with new capabilities

Review Checkpoints:

  1. After Async Implementation: Code review + performance benchmarks
  2. After Each API Expansion: Integration tests + docs review
  3. Before Release: Full regression test + security audit

Release Criteria for v0.2.0:

  • All Phase 2 tasks completed
  • All quality gates passed
  • Beta testing with real users (minimum 3 users)
  • No critical or high-severity bugs
  • Documentation comprehensive and accurate

Phase 3: Reliability & Performance

Target Duration: 3-4 weeks Target Version: v0.3.0 Goal: Production-grade reliability and performance

3.1 Intelligent Caching Layer

3.1.1 Cache Architecture

Objective: Pluggable caching with multiple backends

Design:

from wikijs import WikiJSClient
from wikijs.cache import MemoryCache, RedisCache, FileCache

# No caching (default - backward compatible)
client = WikiJSClient(url, auth)

# Memory cache (development)
client = WikiJSClient(url, auth, cache=MemoryCache(ttl=300, max_size=1000))

# Redis cache (production)
client = WikiJSClient(url, auth, cache=RedisCache(
    host="localhost",
    ttl=600,
    key_prefix="wikijs:"
))

# File cache (persistent)
client = WikiJSClient(url, auth, cache=FileCache(
    cache_dir="/tmp/wikijs_cache",
    ttl=3600
))

File Structure:

wikijs/cache/
├── __init__.py           # Cache exports
├── base.py              # CacheBackend abstract base class
├── memory.py            # MemoryCache implementation
├── redis.py             # RedisCache implementation
├── file.py              # FileCache implementation
└── strategies.py        # Cache invalidation strategies

tests/cache/
├── test_memory_cache.py
├── test_redis_cache.py
├── test_file_cache.py
└── test_invalidation.py

Tasks:

  1. Create cache base classes (wikijs/cache/base.py)

    from abc import ABC, abstractmethod
    from typing import Any, Optional
    
    class CacheBackend(ABC):
        @abstractmethod
        def get(self, key: str) -> Optional[Any]:
            """Get value from cache."""
    
        @abstractmethod
        def set(self, key: str, value: Any, ttl: Optional[int] = None) -> None:
            """Set value in cache."""
    
        @abstractmethod
        def delete(self, key: str) -> None:
            """Delete key from cache."""
    
        @abstractmethod
        def clear(self) -> None:
            """Clear all cache entries."""
    
  2. Implement MemoryCache (LRU with TTL)

    • Use collections.OrderedDict for LRU
    • Timestamp-based TTL expiration
    • Thread-safe operations with threading.Lock
    • Configurable max size (default: 1000 entries)
  3. Implement RedisCache

    • Use redis-py library
    • Automatic serialization with pickle
    • Connection pooling
    • Optional key prefix for multi-tenant support
  4. Implement FileCache

    • Store as JSON/pickle files
    • Directory-based organization
    • Automatic cleanup of expired entries
    • Disk space management
  5. Integrate caching into client

    • Cache key generation (URL + params hash)
    • Cache middleware in _request() method
    • Only cache GET requests (not POST/PUT/DELETE)
    • Respect Cache-Control headers if present

Cache Invalidation Strategy:

# Time-based (TTL)
cache = MemoryCache(ttl=300)  # 5 minutes

# Event-based invalidation
client.pages.update(page_id, content="New")  # Auto-invalidate cached page

# Manual invalidation
client.cache.clear()  # Clear all
client.cache.delete(f"pages:{page_id}")  # Clear specific

Testing Requirements:

  • Unit tests for each cache backend (>95% coverage)
  • Cache hit/miss rate tests
  • TTL expiration tests
  • Concurrent access tests (thread safety)
  • Cache invalidation tests
  • Memory usage tests (no leaks)
  • Performance benchmarks (cache vs no-cache)

Documentation Requirements:

  • docs/caching.md - Comprehensive caching guide
  • Configuration examples for each backend
  • Best practices for cache invalidation
  • Performance tuning guide

Success Criteria:

  • Cache hit ratio >80% for typical usage patterns
  • No race conditions in concurrent scenarios
  • Memory usage stays bounded (LRU eviction works)
  • Redis cache handles connection failures gracefully
  • Clear performance improvement (>50% faster for cached requests)

Estimated Effort: 10-12 hours, 35-40 AI sessions


3.2 Batch Operations with GraphQL Optimization

3.2.1 GraphQL Batch Queries

Objective: Single request for multiple operations

Implementation:

# Instead of N requests (slow)
pages = [client.pages.get(id) for id in [1, 2, 3, 4, 5]]

# Single batched request (fast)
pages = client.pages.get_many([1, 2, 3, 4, 5])

# Batch create
results = client.pages.create_many([
    {"title": "Page 1", "path": "/page-1", "content": "Content 1"},
    {"title": "Page 2", "path": "/page-2", "content": "Content 2"},
    {"title": "Page 3", "path": "/page-3", "content": "Content 3"},
])

# Batch update
results = client.pages.update_many([
    {"id": 1, "content": "New content 1"},
    {"id": 2, "content": "New content 2"},
])

# Batch delete
results = client.pages.delete_many([1, 2, 3, 4, 5])

GraphQL Batch Query Structure:

query GetMultiplePages {
  page1: pages { single(id: 1) { id, title, content } }
  page2: pages { single(id: 2) { id, title, content } }
  page3: pages { single(id: 3) { id, title, content } }
}

mutation CreateMultiplePages {
  page1: pages { create(title: "Page 1", path: "/page-1") { responseResult } }
  page2: pages { create(title: "Page 2", path: "/page-2") { responseResult } }
}

Tasks:

  1. Create batch query builder (wikijs/utils/batch.py)

    • Generate aliased GraphQL queries
    • Handle maximum batch size limits (default: 50)
    • Automatic splitting for large batches
  2. Add batch methods to PagesEndpoint

    • get_many(ids: List[int]) -> List[Page]
    • create_many(pages: List[Dict]) -> List[Page]
    • update_many(updates: List[Dict]) -> List[Page]
    • delete_many(ids: List[int]) -> List[bool]
  3. Error handling for partial failures

    • Return results + errors separately
    • Continue processing even if some operations fail
    result = client.pages.create_many([...])
    print(f"Created: {len(result.success)}")
    print(f"Failed: {len(result.errors)}")
    for error in result.errors:
        print(f"  - {error.index}: {error.message}")
    
  4. Extend to other endpoints

    • Users batch operations
    • Groups batch operations
    • Assets batch upload

Testing Requirements:

  • Batch operation tests (various sizes)
  • Partial failure handling tests
  • Performance benchmarks (batch vs sequential)
  • Large batch tests (1000+ items with auto-splitting)
  • Concurrent batch operation tests

Documentation Requirements:

  • docs/batch_operations.md - Batch operations guide
  • Performance comparison examples
  • Error handling examples

Success Criteria:

  • Batch operations >10x faster than sequential for 50+ items
  • Graceful handling of partial failures
  • Clear error messages for failed operations
  • Automatic splitting for batches exceeding limits

Estimated Effort: 8-10 hours, 30-35 AI sessions


3.3 Rate Limiting & Throttling

3.3.1 Client-Side Rate Limiting

Objective: Prevent API abuse and respect server limits

Implementation:

from wikijs import WikiJSClient
from wikijs.middleware import RateLimiter

# Simple rate limiting
client = WikiJSClient(
    url,
    auth,
    rate_limiter=RateLimiter(requests_per_second=10)
)

# Advanced rate limiting
client = WikiJSClient(
    url,
    auth,
    rate_limiter=RateLimiter(
        requests_per_second=10,
        burst_size=20,  # Allow bursts up to 20 requests
        strategy="token_bucket"  # or "sliding_window"
    )
)

# Per-endpoint rate limits
client = WikiJSClient(
    url,
    auth,
    rate_limiter=RateLimiter(
        default_rps=10,
        endpoint_limits={
            "/graphql": 5,  # Slower for GraphQL
            "/assets": 2,   # Even slower for uploads
        }
    )
)

Tasks:

  1. Create rate limiter middleware (wikijs/middleware/rate_limiter.py)

    • Token bucket algorithm implementation
    • Sliding window algorithm implementation
    • Async-compatible (works with both sync and async clients)
  2. Integrate into client (_request() method)

    • Pre-request rate limit check
    • Automatic waiting if limit exceeded
    • Rate limit headers tracking (if provided by server)
  3. Add rate limit exceeded handling

    • Custom exception RateLimitExceeded
    • Configurable behavior (wait, raise, callback)
    # Wait automatically (default)
    client = WikiJSClient(url, auth, rate_limiter=RateLimiter(...))
    
    # Raise exception immediately
    client = WikiJSClient(
        url,
        auth,
        rate_limiter=RateLimiter(..., on_limit="raise")
    )
    
    # Custom callback
    def on_rate_limit(wait_time):
        print(f"Rate limited, waiting {wait_time}s...")
    
    client = WikiJSClient(
        url,
        auth,
        rate_limiter=RateLimiter(..., on_limit=on_rate_limit)
    )
    

Testing Requirements:

  • Rate limiter algorithm tests
  • Integration tests with client
  • Concurrent request rate limiting tests
  • Burst handling tests

Documentation Requirements:

  • docs/rate_limiting.md - Rate limiting guide
  • Configuration examples
  • Best practices for production usage

Success Criteria:

  • Accurately enforces configured rate limits
  • Works seamlessly with both sync and async clients
  • No performance overhead when rate limits not hit
  • Clear feedback when rate limited

Estimated Effort: 5-6 hours, 20-25 AI sessions


3.4 Circuit Breaker & Enhanced Retry Logic

3.4.1 Circuit Breaker Pattern

Objective: Prevent cascading failures and improve resilience

Implementation:

from wikijs import WikiJSClient
from wikijs.middleware import CircuitBreaker, RetryStrategy

# Circuit breaker configuration
client = WikiJSClient(
    url,
    auth,
    circuit_breaker=CircuitBreaker(
        failure_threshold=5,      # Open after 5 failures
        recovery_timeout=60,      # Try again after 60s
        success_threshold=2,      # Close after 2 successes
        on_open=lambda: print("Circuit opened!")
    )
)

# Enhanced retry strategy
client = WikiJSClient(
    url,
    auth,
    retry_strategy=RetryStrategy(
        max_retries=5,
        backoff="exponential",    # or "linear", "constant"
        initial_delay=1,          # Start with 1s
        max_delay=60,             # Cap at 60s
        jitter=True,              # Add randomness
        retry_on=[500, 502, 503, 504, 429],  # Status codes
    )
)

# Combined resilience
client = WikiJSClient(
    url,
    auth,
    retry_strategy=RetryStrategy(...),
    circuit_breaker=CircuitBreaker(...)
)

Circuit Breaker States:

CLOSED (normal) -> OPEN (failing) -> HALF_OPEN (testing) -> CLOSED/OPEN
       ^                                                            |
       |___________________________________________________________|

Tasks:

  1. Implement CircuitBreaker (wikijs/middleware/circuit_breaker.py)

    • State machine (CLOSED, OPEN, HALF_OPEN)
    • Failure/success counters
    • Automatic state transitions
    • Thread-safe implementation
  2. Enhance retry strategy (wikijs/middleware/retry.py)

    • Exponential backoff with jitter
    • Configurable retry conditions
    • Respect Retry-After headers
    • Maximum retry time limit
  3. Integrate into client

    • Wrap _request() method
    • Circuit breaker check before request
    • Retry logic on failures
    • Proper exception propagation
  4. Add metrics and monitoring

    • Circuit breaker state changes logging
    • Retry attempt logging
    • Failure rate tracking
    # Get circuit breaker stats
    stats = client.circuit_breaker.stats()
    print(f"State: {stats.state}")
    print(f"Failures: {stats.failure_count}")
    print(f"Last failure: {stats.last_failure_time}")
    

Testing Requirements:

  • Circuit breaker state transition tests
  • Retry strategy tests (all backoff types)
  • Integration tests with failing server
  • Concurrent request tests
  • Metrics accuracy tests

Documentation Requirements:

  • docs/resilience.md - Resilience patterns guide
  • Circuit breaker configuration guide
  • Retry strategy best practices

Success Criteria:

  • Circuit breaker prevents cascading failures
  • Retry logic handles transient failures gracefully
  • System recovers automatically when service restores
  • Clear logging of failure patterns

Estimated Effort: 8-10 hours, 30-35 AI sessions


Phase 3 Quality Gates

Performance Requirements:

  • Caching improves response time by >50% for repeated requests
  • Batch operations >10x faster than sequential for 50+ items
  • Rate limiting adds <1ms overhead per request
  • Circuit breaker detection time <100ms
  • No memory leaks in long-running processes

Reliability Requirements:

  • System handles 1000+ concurrent requests without failure
  • Circuit breaker successfully prevents cascading failures
  • Cache invalidation prevents stale data
  • Rate limiting prevents API abuse
  • Retry logic handles transient failures (tested with chaos engineering)

Testing:

  • Load tests with 10,000+ requests
  • Chaos engineering tests (random failures)
  • Long-running stability tests (24+ hours)
  • Memory profiling shows no leaks
  • All quality gates from Phase 2 still passing

Documentation:

  • Performance tuning guide
  • Production deployment guide
  • Monitoring and observability guide
  • Troubleshooting guide

Review Checkpoints:

  1. After Caching Implementation: Performance benchmarks + load tests
  2. After Batch Operations: Integration tests + performance comparison
  3. After Resilience Features: Chaos engineering tests + reliability validation
  4. Before Release: Full production readiness review

Release Criteria for v0.3.0:

  • All Phase 3 tasks completed
  • All performance and reliability requirements met
  • Production deployment tested with pilot users
  • Zero critical bugs, <3 high-severity bugs
  • Complete production deployment guide

🌟 Phase 4: Advanced Features

Target Duration: 4-5 weeks Target Version: v1.0.0 Goal: Enterprise-grade features and ecosystem

4.1 Advanced CLI

Objective: Comprehensive command-line interface

Features:

# Interactive mode
wikijs interactive --url https://wiki.example.com --api-key TOKEN

# Page operations
wikijs pages list --filter "title:API"
wikijs pages get 123
wikijs pages create --title "New Page" --content-file content.md
wikijs pages update 123 --title "Updated Title"
wikijs pages delete 123

# Bulk operations
wikijs pages import --directory ./pages
wikijs pages export --output ./backup

# User management
wikijs users list
wikijs users create --email user@example.com --name "John Doe"

# Configuration
wikijs config init  # Create config file
wikijs config validate  # Validate config

# Health check
wikijs health check
wikijs health stats

Tasks:

  1. Implement CLI with Click framework
  2. Add rich formatting for output
  3. Interactive mode with prompt_toolkit
  4. Progress bars for long operations
  5. Configuration file support

Estimated Effort: 12-15 hours


4.2 Plugin Architecture

Objective: Extensible middleware and custom providers

Features:

from wikijs import WikiJSClient
from wikijs.plugins import LoggingPlugin, MetricsPlugin

# Custom plugin
class CustomAuthPlugin:
    def before_request(self, method, url, **kwargs):
        # Custom logic before request
        pass

    def after_request(self, response):
        # Custom logic after response
        pass

client = WikiJSClient(
    url,
    auth,
    plugins=[
        LoggingPlugin(level="DEBUG"),
        MetricsPlugin(backend="prometheus"),
        CustomAuthPlugin()
    ]
)

Estimated Effort: 10-12 hours


4.3 Webhook Support

Objective: React to Wiki.js events

Features:

from wikijs.webhooks import WebhookServer

# Create webhook server
server = WebhookServer(secret="webhook-secret")

@server.on("page.created")
def on_page_created(event):
    print(f"New page created: {event.page.title}")

@server.on("page.updated")
def on_page_updated(event):
    print(f"Page updated: {event.page.title}")

# Start server
server.run(host="0.0.0.0", port=8080)

Estimated Effort: 8-10 hours


Phase 4 Quality Gates

Feature Completeness:

  • CLI covers all major operations
  • Plugin system supports common use cases
  • Webhook handling is reliable and secure

Enterprise Readiness:

  • Multi-tenancy support
  • Advanced security features
  • Comprehensive audit logging
  • Enterprise documentation

Release Criteria for v1.0.0:

  • Feature parity with official SDKs
  • Production-proven with multiple enterprises
  • Complete ecosystem (CLI, plugins, webhooks)
  • Comprehensive documentation and tutorials
  • Active community support

📊 Implementation Tracking

Development Velocity Metrics

Metric Target Tracking Method
Test Coverage >90% pytest-cov
Code Quality Score >8.5/10 SonarQube/CodeClimate
Documentation Coverage 100% Manual review
API Response Time <100ms Performance benchmarks
Bug Resolution Time <48h GitHub Issues

Progress Tracking Template

Phase_2_Progress:
  Status: "NOT_STARTED"  # or IN_PROGRESS, COMPLETE
  Completion: 0%

  Task_2.1_Async:
    Status: "NOT_STARTED"
    Completion: 0%
    Started: null
    Completed: null
    Notes: []

  Task_2.2_API_Expansion:
    Status: "NOT_STARTED"
    Completion: 0%

    Subtask_2.2.1_Users:
      Status: "NOT_STARTED"
      Completion: 0%

    Subtask_2.2.2_Groups:
      Status: "NOT_STARTED"
      Completion: 0%

    Subtask_2.2.3_Assets:
      Status: "NOT_STARTED"
      Completion: 0%

🔄 Development Workflow

1. Phase Kickoff

  • Review phase objectives and requirements
  • Set up tracking in CLAUDE.md
  • Create feature branches for major components
  • Schedule review checkpoints

2. During Development

  • Update progress tracking after each task
  • Run tests continuously (TDD approach)
  • Update documentation as features are built
  • Conduct peer reviews for critical code
  • Performance benchmarking for new features

3. Phase Completion

  • All tasks completed and tested
  • Documentation comprehensive and reviewed
  • Performance benchmarks meet targets
  • Security scan passes
  • Beta testing with real users
  • Retrospective meeting
  • Release preparation

📝 Testing Strategy

Test Pyramid

        E2E Tests (5%)
       /              \
      Integration (15%)
     /                  \
    Unit Tests (80%)

Testing Requirements by Phase

Phase 2:

  • Unit: >95% coverage
  • Integration: All CRUD operations
  • Performance: Async vs sync benchmarks
  • Security: Auth validation

Phase 3:

  • Load: 10,000+ requests
  • Chaos: Random failure injection
  • Stability: 24+ hour runs
  • Cache: Hit rate >80%

Phase 4:

  • End-to-End: Complete workflows
  • CLI: All commands tested
  • Plugins: Custom plugin scenarios

📖 Documentation Strategy

Documentation Hierarchy

  1. README.md - Quick start and overview
  2. docs/getting_started.md - Detailed installation and setup
  3. docs/api/ - Complete API reference
  4. docs/guides/ - Feature-specific guides
  5. examples/ - Working code examples
  6. CHANGELOG.md - Version history
  7. CONTRIBUTING.md - Development guide

Documentation Requirements

Each feature must include:

  • API reference with all parameters documented
  • At least 3 usage examples (basic, intermediate, advanced)
  • Common pitfalls and troubleshooting
  • Performance considerations
  • Security best practices

🚀 Release Strategy

Pre-Release Checklist

Code Quality:

  • All tests pass
  • Coverage >90%
  • No critical/high security issues
  • Performance benchmarks meet targets
  • Code review completed

Documentation:

  • All APIs documented
  • Examples updated
  • CHANGELOG.md updated
  • Migration guide (if breaking changes)
  • README.md updated

Testing:

  • Integration tests pass
  • Load tests pass
  • Beta testing complete
  • No blocking bugs

Process:

  • Version number updated
  • Git tag created
  • GitHub release notes prepared
  • PyPI package prepared

Release Communication

  1. Pre-release (1 week before):

    • Announce on GitHub Discussions
    • Share release notes draft
    • Request community feedback
  2. Release day:

    • Publish to GitHub
    • Update documentation site
    • Social media announcement
    • Community notification
  3. Post-release (1 week after):

    • Monitor for critical bugs
    • Respond to user feedback
    • Plan hotfix if needed

🎯 Success Metrics

Phase 2 Success Metrics

  • Async client achieves >3x throughput
  • All Wiki.js APIs have coverage
  • >100 downloads in first month
  • >10 GitHub stars
  • Zero critical bugs after 2 weeks

Phase 3 Success Metrics

  • Cache hit rate >80%
  • Batch operations >10x faster
  • 99.9% uptime in production
  • <100ms p95 response time
  • >500 downloads/month

Phase 4 Success Metrics

  • CLI adoption by >30% of users
  • >5 community plugins
  • >1000 downloads/month
  • >50 GitHub stars
  • Enterprise customer deployments

🤝 Community Engagement

Feedback Channels

  • GitHub Issues for bugs
  • GitHub Discussions for features
  • Discord/Slack for real-time chat
  • Monthly community calls

Contribution Opportunities

  • Bug fixes and improvements
  • New API endpoints
  • Documentation improvements
  • Example projects
  • Plugin development

📅 Timeline Summary

Phase Duration Target Date Key Deliverables
Phase 1 Complete Done MVP with Pages API
Phase 2 3-4 weeks Week 8 Async + Full API Coverage
Phase 3 3-4 weeks Week 12 Production Reliability
Phase 4 4-5 weeks Week 17 Enterprise Features
Total ~17 weeks ~4 months v1.0.0 Release

🎓 Key Takeaways

  1. Quality First: Every feature includes tests and documentation
  2. Incremental Value: Each phase delivers real user value
  3. Backward Compatible: No breaking changes without major version
  4. Community Driven: Engage users throughout development
  5. Production Ready: Focus on reliability, performance, security

This improvement plan ensures the Wiki.js Python SDK evolves into a world-class, enterprise-ready solution while maintaining high quality standards throughout development.

Next Steps:

  1. Review and approve this plan
  2. Update CLAUDE.md with Phase 2 details
  3. Begin Phase 2 implementation
  4. Establish continuous progress tracking