Files
py-wikijs/docs/IMPROVEMENT_PLAN.md
Claude 9775d02699 Add comprehensive SDK improvement plan for Phases 2-4
This commit introduces a detailed improvement plan that outlines the
strategic evolution of the Wiki.js Python SDK from v0.1.0 (MVP) to
v1.0.0 (Enterprise-grade).

Key additions:

1. **IMPROVEMENT_PLAN.md** - Comprehensive 47-page specification
   - Phase 2: Essential Features + Async Support (v0.2.0)
     * Async/await implementation with aiohttp
     * API expansion: Users, Groups, Assets
     * Auto-pagination support
     * Dual sync/async client architecture

   - Phase 3: Reliability & Performance (v0.3.0)
     * Intelligent caching layer (Memory, Redis, File)
     * GraphQL batch operations
     * Rate limiting & throttling
     * Circuit breaker & enhanced retry logic

   - Phase 4: Advanced Features (v1.0.0)
     * Advanced CLI with rich formatting
     * Plugin architecture for extensibility
     * Webhook support for event handling

2. **CLAUDE.md updates**
   - Updated phase definitions with detailed task breakdowns
   - Added Phase 2 implementation steps and quality gates
   - Included success criteria and time estimates
   - Enhanced development guidelines for Phase 2
   - Updated current focus from Phase 1 to Phase 2

Implementation strategy:
- Test-driven development with >95% coverage
- Documentation alongside code development
- Quality gates at every checkpoint
- Backward compatibility guaranteed
- Performance benchmarks for all features

Timeline: ~17 weeks total (4 months to v1.0.0)

This plan ensures we deliver production-ready, enterprise-grade
features while maintaining the highest quality standards throughout.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-22 17:59:48 +00:00

1253 lines
34 KiB
Markdown

# Wiki.js Python SDK - Comprehensive Improvement Plan
**Version**: 2.0
**Created**: 2025-10-22
**Status**: Active Development
**Current Version**: v0.1.0 (Phase 1 Complete)
---
## 📋 Executive Summary
This document outlines the strategic improvements to evolve the Wiki.js Python SDK from a functional MVP to an enterprise-grade solution. The plan emphasizes:
- **Quality First**: Every feature includes comprehensive tests and documentation
- **Incremental Delivery**: Each phase delivers measurable value
- **Backward Compatibility**: No breaking changes without major version bump
- **Developer Experience**: Intuitive APIs with clear error messages
### Key Improvements Overview
| Improvement | Phase | Impact | Complexity |
|-------------|-------|--------|------------|
| Async/Await Support | 2 | HIGH | MEDIUM |
| API Expansion (Users, Groups, Assets) | 2 | HIGH | MEDIUM |
| Intelligent Caching Layer | 3 | HIGH | MEDIUM |
| Batch Operations (GraphQL) | 3 | HIGH | LOW |
| Rate Limiting & Throttling | 3 | MEDIUM | LOW |
| Circuit Breaker & Retry Logic | 3 | MEDIUM | MEDIUM |
| Auto-Pagination Iterators | 2 | MEDIUM | LOW |
| Advanced CLI | 4 | MEDIUM | HIGH |
| Plugin Architecture | 4 | LOW | HIGH |
---
## 🎯 Phase 2: Essential Features + Async Support
**Target Duration**: 3-4 weeks
**Target Version**: v0.2.0
**Goal**: Complete API coverage + modern async support
### 2.1 Async/Await Implementation
#### 2.1.1 Dual Client Architecture
**Objective**: Provide both sync and async clients without breaking existing code
**Implementation Strategy**:
```python
# Current sync client (unchanged)
from wikijs import WikiJSClient
# New async client
from wikijs.aio import AsyncWikiJSClient
# Both share same interface
client = WikiJSClient(url, auth)
async_client = AsyncWikiJSClient(url, auth)
```
**Tasks**:
1.**Create `wikijs/aio/` module structure**
- `wikijs/aio/__init__.py` - Async exports
- `wikijs/aio/client.py` - AsyncWikiJSClient implementation
- `wikijs/aio/endpoints.py` - Async endpoint handlers
2.**Implement AsyncWikiJSClient**
- Use `aiohttp.ClientSession` instead of `requests.Session`
- Async context manager support (`async with`)
- Async methods: `_arequest()`, `_ahandle_response()`
- Connection pooling configuration
3.**Create async endpoint classes**
- `AsyncPagesEndpoint` with all CRUD operations
- Maintain same method signatures (add `async`/`await`)
- Reuse models and exceptions from sync client
4.**Add async authentication handlers**
- `AsyncAPIKeyAuth` - Simple header injection
- `AsyncJWTAuth` - Async token refresh logic
**Testing Requirements**:
- [ ] Unit tests for `AsyncWikiJSClient` (>95% coverage)
- [ ] Unit tests for async endpoints (>95% coverage)
- [ ] Integration tests with real Wiki.js instance
- [ ] Concurrent request tests (100+ simultaneous requests)
- [ ] Performance benchmarks (async vs sync)
- [ ] Error handling tests (timeouts, connection errors)
**Documentation Requirements**:
- [ ] `docs/async_usage.md` - Comprehensive async guide
- [ ] Update `README.md` with async examples
- [ ] Update API reference with async methods
- [ ] Add async examples to `examples/async_basic_usage.py`
- [ ] Migration guide from sync to async
**Success Criteria**:
- [ ] Async client achieves >3x throughput vs sync (100 concurrent requests)
- [ ] All sync features available in async variant
- [ ] Zero breaking changes to existing sync API
- [ ] Documentation covers 100% of async functionality
- [ ] All tests pass with >95% coverage
**Estimated Effort**: 12-15 hours, 40-50 AI sessions
---
#### 2.1.2 Async Context Managers & Resource Cleanup
**Objective**: Proper async resource management
**Implementation**:
```python
# Context manager pattern
async with AsyncWikiJSClient(url, auth) as client:
page = await client.pages.get(123)
# Automatic cleanup on exit
# Manual management
client = AsyncWikiJSClient(url, auth)
try:
page = await client.pages.get(123)
finally:
await client.close()
```
**Tasks**:
1. Implement `__aenter__` and `__aexit__` methods
2. Proper session cleanup in async context
3. Connection pool lifecycle management
4. Graceful shutdown handling
**Testing Requirements**:
- [ ] Resource leak tests (ensure sessions close)
- [ ] Exception handling in context managers
- [ ] Concurrent context manager usage
**Estimated Effort**: 3-4 hours, 10-15 AI sessions
---
### 2.2 API Expansion
#### 2.2.1 Users API Implementation
**Objective**: Complete user management capabilities
**GraphQL Queries to Implement**:
```graphql
# List users
query { users { list { id, name, email, isActive } } }
# Get user
query($id: Int!) { users { single(id: $id) { id, name, email, groups } } }
# Create user
mutation($email: String!, $name: String!) {
users { create(email: $email, name: $name) { responseResult { succeeded } } }
}
# Update user
mutation($id: Int!, $name: String!) {
users { update(id: $id, name: $name) { responseResult { succeeded } } }
}
# Delete user
mutation($id: Int!) { users { delete(id: $id) { responseResult { succeeded } } }
```
**File Structure**:
```
wikijs/endpoints/users.py # Sync implementation
wikijs/aio/endpoints/users.py # Async implementation
wikijs/models/user.py # User data models
tests/endpoints/test_users.py # Sync tests
tests/aio/test_users.py # Async tests
```
**Tasks**:
1.**Create User models** (`wikijs/models/user.py`)
- `User` - Complete user data model
- `UserGroup` - User group membership
- `UserPermissions` - Permission model
2.**Implement UsersEndpoint** (`wikijs/endpoints/users.py`)
- `list(limit, offset, filter)` - List users with pagination
- `get(user_id)` - Get single user by ID
- `create(email, name, password, groups)` - Create new user
- `update(user_id, **kwargs)` - Update user
- `delete(user_id)` - Delete user
- `search(query)` - Search users by name/email
3.**Implement AsyncUsersEndpoint** (async variant)
4.**Add to client** - Register in `WikiJSClient.users`
**Testing Requirements**:
- [ ] Unit tests for UsersEndpoint (>95% coverage)
- [ ] Unit tests for User models
- [ ] Integration tests (CRUD operations)
- [ ] Permission validation tests
- [ ] Edge cases (invalid emails, duplicate users)
**Documentation Requirements**:
- [ ] `docs/api/users.md` - Complete Users API reference
- [ ] Usage examples in `examples/user_management.py`
- [ ] Update main README with Users API section
**Success Criteria**:
- [ ] All CRUD operations functional
- [ ] Model validation prevents invalid data
- [ ] Error handling provides clear feedback
- [ ] Tests achieve >95% coverage
**Estimated Effort**: 8-10 hours, 30-35 AI sessions
---
#### 2.2.2 Groups API Implementation
**Objective**: Group and permission management
**Key Operations**:
```python
# Group management
groups = client.groups.list()
group = client.groups.get(group_id)
new_group = client.groups.create(name="Editors", permissions=["read", "write"])
client.groups.update(group_id, name="Senior Editors")
client.groups.delete(group_id)
# Member management
client.groups.add_user(group_id, user_id)
client.groups.remove_user(group_id, user_id)
members = client.groups.list_members(group_id)
```
**Tasks**:
1. Create Group models (`wikijs/models/group.py`)
2. Implement GroupsEndpoint (`wikijs/endpoints/groups.py`)
3. Implement AsyncGroupsEndpoint (async variant)
4. Add permission validation logic
**Testing Requirements**:
- [ ] Unit tests for GroupsEndpoint (>95% coverage)
- [ ] Integration tests for group-user relationships
- [ ] Permission inheritance tests
**Documentation Requirements**:
- [ ] `docs/api/groups.md` - Groups API reference
- [ ] Examples in `examples/group_management.py`
**Success Criteria**:
- [ ] Group CRUD operations work correctly
- [ ] User-group relationships properly managed
- [ ] Permission validation prevents invalid operations
**Estimated Effort**: 6-8 hours, 25-30 AI sessions
---
#### 2.2.3 Assets API Implementation
**Objective**: File upload and asset management
**Key Operations**:
```python
# Upload asset
asset = client.assets.upload(
file_path="/path/to/image.png",
folder="/images",
optimize=True
)
# List assets
assets = client.assets.list(folder="/images", kind="image")
# Get asset info
asset = client.assets.get(asset_id)
# Delete asset
client.assets.delete(asset_id)
# Download asset
content = client.assets.download(asset_id)
```
**Tasks**:
1. Create Asset models (`wikijs/models/asset.py`)
2. Implement AssetsEndpoint with multipart upload
3. Handle large file uploads (streaming)
4. Async variant for concurrent uploads
**Testing Requirements**:
- [ ] Unit tests for AssetsEndpoint
- [ ] File upload tests (various formats)
- [ ] Large file handling tests (>10MB)
- [ ] Concurrent upload tests (async)
**Documentation Requirements**:
- [ ] `docs/api/assets.md` - Assets API reference
- [ ] Examples in `examples/asset_upload.py`
**Success Criteria**:
- [ ] Support common file formats (images, PDFs, docs)
- [ ] Large file uploads work reliably
- [ ] Progress tracking for uploads
**Estimated Effort**: 8-10 hours, 30-35 AI sessions
---
#### 2.2.4 Auto-Pagination Support
**Objective**: Pythonic iteration over paginated results
**Implementation**:
```python
# Current (manual pagination)
offset = 0
all_pages = []
while True:
batch = client.pages.list(limit=50, offset=offset)
if not batch:
break
all_pages.extend(batch)
offset += 50
# New (auto-pagination)
all_pages = list(client.pages.iter_all())
# Or iterate lazily
for page in client.pages.iter_all(batch_size=50):
process_page(page)
```
**Tasks**:
1. Add `iter_all()` method to all list endpoints
2. Implement lazy iteration with `yield`
3. Support custom batch sizes
4. Async iterator support (`async for`)
**Testing Requirements**:
- [ ] Iterator tests for each endpoint
- [ ] Large dataset tests (1000+ items)
- [ ] Memory efficiency tests
- [ ] Async iterator tests
**Success Criteria**:
- [ ] Memory efficient (doesn't load all at once)
- [ ] Works with all paginated endpoints
- [ ] Async variant available
**Estimated Effort**: 4-5 hours, 15-20 AI sessions
---
### Phase 2 Quality Gates
**Code Quality**:
- [ ] All code follows Black formatting
- [ ] Type hints on 100% of public APIs
- [ ] Docstrings on 100% of public methods
- [ ] MyPy strict mode passes
- [ ] Flake8 with no errors
- [ ] Bandit security scan passes
**Testing**:
- [ ] Overall test coverage >90%
- [ ] All integration tests pass
- [ ] Performance benchmarks established
- [ ] Async performance >3x sync for 100 concurrent requests
- [ ] No memory leaks detected
**Documentation**:
- [ ] All new APIs documented in `docs/api/`
- [ ] Examples for each major feature
- [ ] Migration guides updated
- [ ] CHANGELOG.md updated with all changes
- [ ] README.md updated with new capabilities
**Review Checkpoints**:
1. **After Async Implementation**: Code review + performance benchmarks
2. **After Each API Expansion**: Integration tests + docs review
3. **Before Release**: Full regression test + security audit
**Release Criteria for v0.2.0**:
- [ ] All Phase 2 tasks completed
- [ ] All quality gates passed
- [ ] Beta testing with real users (minimum 3 users)
- [ ] No critical or high-severity bugs
- [ ] Documentation comprehensive and accurate
---
## ⚡ Phase 3: Reliability & Performance
**Target Duration**: 3-4 weeks
**Target Version**: v0.3.0
**Goal**: Production-grade reliability and performance
### 3.1 Intelligent Caching Layer
#### 3.1.1 Cache Architecture
**Objective**: Pluggable caching with multiple backends
**Design**:
```python
from wikijs import WikiJSClient
from wikijs.cache import MemoryCache, RedisCache, FileCache
# No caching (default - backward compatible)
client = WikiJSClient(url, auth)
# Memory cache (development)
client = WikiJSClient(url, auth, cache=MemoryCache(ttl=300, max_size=1000))
# Redis cache (production)
client = WikiJSClient(url, auth, cache=RedisCache(
host="localhost",
ttl=600,
key_prefix="wikijs:"
))
# File cache (persistent)
client = WikiJSClient(url, auth, cache=FileCache(
cache_dir="/tmp/wikijs_cache",
ttl=3600
))
```
**File Structure**:
```
wikijs/cache/
├── __init__.py # Cache exports
├── base.py # CacheBackend abstract base class
├── memory.py # MemoryCache implementation
├── redis.py # RedisCache implementation
├── file.py # FileCache implementation
└── strategies.py # Cache invalidation strategies
tests/cache/
├── test_memory_cache.py
├── test_redis_cache.py
├── test_file_cache.py
└── test_invalidation.py
```
**Tasks**:
1.**Create cache base classes** (`wikijs/cache/base.py`)
```python
from abc import ABC, abstractmethod
from typing import Any, Optional
class CacheBackend(ABC):
@abstractmethod
def get(self, key: str) -> Optional[Any]:
"""Get value from cache."""
@abstractmethod
def set(self, key: str, value: Any, ttl: Optional[int] = None) -> None:
"""Set value in cache."""
@abstractmethod
def delete(self, key: str) -> None:
"""Delete key from cache."""
@abstractmethod
def clear(self) -> None:
"""Clear all cache entries."""
```
2. ✅ **Implement MemoryCache** (LRU with TTL)
- Use `collections.OrderedDict` for LRU
- Timestamp-based TTL expiration
- Thread-safe operations with `threading.Lock`
- Configurable max size (default: 1000 entries)
3. ✅ **Implement RedisCache**
- Use `redis-py` library
- Automatic serialization with `pickle`
- Connection pooling
- Optional key prefix for multi-tenant support
4. ✅ **Implement FileCache**
- Store as JSON/pickle files
- Directory-based organization
- Automatic cleanup of expired entries
- Disk space management
5. ✅ **Integrate caching into client**
- Cache key generation (URL + params hash)
- Cache middleware in `_request()` method
- Only cache GET requests (not POST/PUT/DELETE)
- Respect Cache-Control headers if present
**Cache Invalidation Strategy**:
```python
# Time-based (TTL)
cache = MemoryCache(ttl=300) # 5 minutes
# Event-based invalidation
client.pages.update(page_id, content="New") # Auto-invalidate cached page
# Manual invalidation
client.cache.clear() # Clear all
client.cache.delete(f"pages:{page_id}") # Clear specific
```
**Testing Requirements**:
- [ ] Unit tests for each cache backend (>95% coverage)
- [ ] Cache hit/miss rate tests
- [ ] TTL expiration tests
- [ ] Concurrent access tests (thread safety)
- [ ] Cache invalidation tests
- [ ] Memory usage tests (no leaks)
- [ ] Performance benchmarks (cache vs no-cache)
**Documentation Requirements**:
- [ ] `docs/caching.md` - Comprehensive caching guide
- [ ] Configuration examples for each backend
- [ ] Best practices for cache invalidation
- [ ] Performance tuning guide
**Success Criteria**:
- [ ] Cache hit ratio >80% for typical usage patterns
- [ ] No race conditions in concurrent scenarios
- [ ] Memory usage stays bounded (LRU eviction works)
- [ ] Redis cache handles connection failures gracefully
- [ ] Clear performance improvement (>50% faster for cached requests)
**Estimated Effort**: 10-12 hours, 35-40 AI sessions
---
### 3.2 Batch Operations with GraphQL Optimization
#### 3.2.1 GraphQL Batch Queries
**Objective**: Single request for multiple operations
**Implementation**:
```python
# Instead of N requests (slow)
pages = [client.pages.get(id) for id in [1, 2, 3, 4, 5]]
# Single batched request (fast)
pages = client.pages.get_many([1, 2, 3, 4, 5])
# Batch create
results = client.pages.create_many([
{"title": "Page 1", "path": "/page-1", "content": "Content 1"},
{"title": "Page 2", "path": "/page-2", "content": "Content 2"},
{"title": "Page 3", "path": "/page-3", "content": "Content 3"},
])
# Batch update
results = client.pages.update_many([
{"id": 1, "content": "New content 1"},
{"id": 2, "content": "New content 2"},
])
# Batch delete
results = client.pages.delete_many([1, 2, 3, 4, 5])
```
**GraphQL Batch Query Structure**:
```graphql
query GetMultiplePages {
page1: pages { single(id: 1) { id, title, content } }
page2: pages { single(id: 2) { id, title, content } }
page3: pages { single(id: 3) { id, title, content } }
}
mutation CreateMultiplePages {
page1: pages { create(title: "Page 1", path: "/page-1") { responseResult } }
page2: pages { create(title: "Page 2", path: "/page-2") { responseResult } }
}
```
**Tasks**:
1. ✅ **Create batch query builder** (`wikijs/utils/batch.py`)
- Generate aliased GraphQL queries
- Handle maximum batch size limits (default: 50)
- Automatic splitting for large batches
2. ✅ **Add batch methods to PagesEndpoint**
- `get_many(ids: List[int]) -> List[Page]`
- `create_many(pages: List[Dict]) -> List[Page]`
- `update_many(updates: List[Dict]) -> List[Page]`
- `delete_many(ids: List[int]) -> List[bool]`
3. ✅ **Error handling for partial failures**
- Return results + errors separately
- Continue processing even if some operations fail
```python
result = client.pages.create_many([...])
print(f"Created: {len(result.success)}")
print(f"Failed: {len(result.errors)}")
for error in result.errors:
print(f" - {error.index}: {error.message}")
```
4. ✅ **Extend to other endpoints**
- Users batch operations
- Groups batch operations
- Assets batch upload
**Testing Requirements**:
- [ ] Batch operation tests (various sizes)
- [ ] Partial failure handling tests
- [ ] Performance benchmarks (batch vs sequential)
- [ ] Large batch tests (1000+ items with auto-splitting)
- [ ] Concurrent batch operation tests
**Documentation Requirements**:
- [ ] `docs/batch_operations.md` - Batch operations guide
- [ ] Performance comparison examples
- [ ] Error handling examples
**Success Criteria**:
- [ ] Batch operations >10x faster than sequential for 50+ items
- [ ] Graceful handling of partial failures
- [ ] Clear error messages for failed operations
- [ ] Automatic splitting for batches exceeding limits
**Estimated Effort**: 8-10 hours, 30-35 AI sessions
---
### 3.3 Rate Limiting & Throttling
#### 3.3.1 Client-Side Rate Limiting
**Objective**: Prevent API abuse and respect server limits
**Implementation**:
```python
from wikijs import WikiJSClient
from wikijs.middleware import RateLimiter
# Simple rate limiting
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(requests_per_second=10)
)
# Advanced rate limiting
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(
requests_per_second=10,
burst_size=20, # Allow bursts up to 20 requests
strategy="token_bucket" # or "sliding_window"
)
)
# Per-endpoint rate limits
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(
default_rps=10,
endpoint_limits={
"/graphql": 5, # Slower for GraphQL
"/assets": 2, # Even slower for uploads
}
)
)
```
**Tasks**:
1. ✅ **Create rate limiter middleware** (`wikijs/middleware/rate_limiter.py`)
- Token bucket algorithm implementation
- Sliding window algorithm implementation
- Async-compatible (works with both sync and async clients)
2. ✅ **Integrate into client** (`_request()` method)
- Pre-request rate limit check
- Automatic waiting if limit exceeded
- Rate limit headers tracking (if provided by server)
3. ✅ **Add rate limit exceeded handling**
- Custom exception `RateLimitExceeded`
- Configurable behavior (wait, raise, callback)
```python
# Wait automatically (default)
client = WikiJSClient(url, auth, rate_limiter=RateLimiter(...))
# Raise exception immediately
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(..., on_limit="raise")
)
# Custom callback
def on_rate_limit(wait_time):
print(f"Rate limited, waiting {wait_time}s...")
client = WikiJSClient(
url,
auth,
rate_limiter=RateLimiter(..., on_limit=on_rate_limit)
)
```
**Testing Requirements**:
- [ ] Rate limiter algorithm tests
- [ ] Integration tests with client
- [ ] Concurrent request rate limiting tests
- [ ] Burst handling tests
**Documentation Requirements**:
- [ ] `docs/rate_limiting.md` - Rate limiting guide
- [ ] Configuration examples
- [ ] Best practices for production usage
**Success Criteria**:
- [ ] Accurately enforces configured rate limits
- [ ] Works seamlessly with both sync and async clients
- [ ] No performance overhead when rate limits not hit
- [ ] Clear feedback when rate limited
**Estimated Effort**: 5-6 hours, 20-25 AI sessions
---
### 3.4 Circuit Breaker & Enhanced Retry Logic
#### 3.4.1 Circuit Breaker Pattern
**Objective**: Prevent cascading failures and improve resilience
**Implementation**:
```python
from wikijs import WikiJSClient
from wikijs.middleware import CircuitBreaker, RetryStrategy
# Circuit breaker configuration
client = WikiJSClient(
url,
auth,
circuit_breaker=CircuitBreaker(
failure_threshold=5, # Open after 5 failures
recovery_timeout=60, # Try again after 60s
success_threshold=2, # Close after 2 successes
on_open=lambda: print("Circuit opened!")
)
)
# Enhanced retry strategy
client = WikiJSClient(
url,
auth,
retry_strategy=RetryStrategy(
max_retries=5,
backoff="exponential", # or "linear", "constant"
initial_delay=1, # Start with 1s
max_delay=60, # Cap at 60s
jitter=True, # Add randomness
retry_on=[500, 502, 503, 504, 429], # Status codes
)
)
# Combined resilience
client = WikiJSClient(
url,
auth,
retry_strategy=RetryStrategy(...),
circuit_breaker=CircuitBreaker(...)
)
```
**Circuit Breaker States**:
```
CLOSED (normal) -> OPEN (failing) -> HALF_OPEN (testing) -> CLOSED/OPEN
^ |
|___________________________________________________________|
```
**Tasks**:
1. ✅ **Implement CircuitBreaker** (`wikijs/middleware/circuit_breaker.py`)
- State machine (CLOSED, OPEN, HALF_OPEN)
- Failure/success counters
- Automatic state transitions
- Thread-safe implementation
2. ✅ **Enhance retry strategy** (`wikijs/middleware/retry.py`)
- Exponential backoff with jitter
- Configurable retry conditions
- Respect Retry-After headers
- Maximum retry time limit
3. ✅ **Integrate into client**
- Wrap `_request()` method
- Circuit breaker check before request
- Retry logic on failures
- Proper exception propagation
4. ✅ **Add metrics and monitoring**
- Circuit breaker state changes logging
- Retry attempt logging
- Failure rate tracking
```python
# Get circuit breaker stats
stats = client.circuit_breaker.stats()
print(f"State: {stats.state}")
print(f"Failures: {stats.failure_count}")
print(f"Last failure: {stats.last_failure_time}")
```
**Testing Requirements**:
- [ ] Circuit breaker state transition tests
- [ ] Retry strategy tests (all backoff types)
- [ ] Integration tests with failing server
- [ ] Concurrent request tests
- [ ] Metrics accuracy tests
**Documentation Requirements**:
- [ ] `docs/resilience.md` - Resilience patterns guide
- [ ] Circuit breaker configuration guide
- [ ] Retry strategy best practices
**Success Criteria**:
- [ ] Circuit breaker prevents cascading failures
- [ ] Retry logic handles transient failures gracefully
- [ ] System recovers automatically when service restores
- [ ] Clear logging of failure patterns
**Estimated Effort**: 8-10 hours, 30-35 AI sessions
---
### Phase 3 Quality Gates
**Performance Requirements**:
- [ ] Caching improves response time by >50% for repeated requests
- [ ] Batch operations >10x faster than sequential for 50+ items
- [ ] Rate limiting adds <1ms overhead per request
- [ ] Circuit breaker detection time <100ms
- [ ] No memory leaks in long-running processes
**Reliability Requirements**:
- [ ] System handles 1000+ concurrent requests without failure
- [ ] Circuit breaker successfully prevents cascading failures
- [ ] Cache invalidation prevents stale data
- [ ] Rate limiting prevents API abuse
- [ ] Retry logic handles transient failures (tested with chaos engineering)
**Testing**:
- [ ] Load tests with 10,000+ requests
- [ ] Chaos engineering tests (random failures)
- [ ] Long-running stability tests (24+ hours)
- [ ] Memory profiling shows no leaks
- [ ] All quality gates from Phase 2 still passing
**Documentation**:
- [ ] Performance tuning guide
- [ ] Production deployment guide
- [ ] Monitoring and observability guide
- [ ] Troubleshooting guide
**Review Checkpoints**:
1. **After Caching Implementation**: Performance benchmarks + load tests
2. **After Batch Operations**: Integration tests + performance comparison
3. **After Resilience Features**: Chaos engineering tests + reliability validation
4. **Before Release**: Full production readiness review
**Release Criteria for v0.3.0**:
- [ ] All Phase 3 tasks completed
- [ ] All performance and reliability requirements met
- [ ] Production deployment tested with pilot users
- [ ] Zero critical bugs, <3 high-severity bugs
- [ ] Complete production deployment guide
---
## 🌟 Phase 4: Advanced Features
**Target Duration**: 4-5 weeks
**Target Version**: v1.0.0
**Goal**: Enterprise-grade features and ecosystem
### 4.1 Advanced CLI
**Objective**: Comprehensive command-line interface
**Features**:
```bash
# Interactive mode
wikijs interactive --url https://wiki.example.com --api-key TOKEN
# Page operations
wikijs pages list --filter "title:API"
wikijs pages get 123
wikijs pages create --title "New Page" --content-file content.md
wikijs pages update 123 --title "Updated Title"
wikijs pages delete 123
# Bulk operations
wikijs pages import --directory ./pages
wikijs pages export --output ./backup
# User management
wikijs users list
wikijs users create --email user@example.com --name "John Doe"
# Configuration
wikijs config init # Create config file
wikijs config validate # Validate config
# Health check
wikijs health check
wikijs health stats
```
**Tasks**:
1. Implement CLI with Click framework
2. Add rich formatting for output
3. Interactive mode with prompt_toolkit
4. Progress bars for long operations
5. Configuration file support
**Estimated Effort**: 12-15 hours
---
### 4.2 Plugin Architecture
**Objective**: Extensible middleware and custom providers
**Features**:
```python
from wikijs import WikiJSClient
from wikijs.plugins import LoggingPlugin, MetricsPlugin
# Custom plugin
class CustomAuthPlugin:
def before_request(self, method, url, **kwargs):
# Custom logic before request
pass
def after_request(self, response):
# Custom logic after response
pass
client = WikiJSClient(
url,
auth,
plugins=[
LoggingPlugin(level="DEBUG"),
MetricsPlugin(backend="prometheus"),
CustomAuthPlugin()
]
)
```
**Estimated Effort**: 10-12 hours
---
### 4.3 Webhook Support
**Objective**: React to Wiki.js events
**Features**:
```python
from wikijs.webhooks import WebhookServer
# Create webhook server
server = WebhookServer(secret="webhook-secret")
@server.on("page.created")
def on_page_created(event):
print(f"New page created: {event.page.title}")
@server.on("page.updated")
def on_page_updated(event):
print(f"Page updated: {event.page.title}")
# Start server
server.run(host="0.0.0.0", port=8080)
```
**Estimated Effort**: 8-10 hours
---
### Phase 4 Quality Gates
**Feature Completeness**:
- [ ] CLI covers all major operations
- [ ] Plugin system supports common use cases
- [ ] Webhook handling is reliable and secure
**Enterprise Readiness**:
- [ ] Multi-tenancy support
- [ ] Advanced security features
- [ ] Comprehensive audit logging
- [ ] Enterprise documentation
**Release Criteria for v1.0.0**:
- [ ] Feature parity with official SDKs
- [ ] Production-proven with multiple enterprises
- [ ] Complete ecosystem (CLI, plugins, webhooks)
- [ ] Comprehensive documentation and tutorials
- [ ] Active community support
---
## 📊 Implementation Tracking
### Development Velocity Metrics
| Metric | Target | Tracking Method |
|--------|--------|-----------------|
| Test Coverage | >90% | pytest-cov |
| Code Quality Score | >8.5/10 | SonarQube/CodeClimate |
| Documentation Coverage | 100% | Manual review |
| API Response Time | <100ms | Performance benchmarks |
| Bug Resolution Time | <48h | GitHub Issues |
### Progress Tracking Template
```yaml
Phase_2_Progress:
Status: "NOT_STARTED" # or IN_PROGRESS, COMPLETE
Completion: 0%
Task_2.1_Async:
Status: "NOT_STARTED"
Completion: 0%
Started: null
Completed: null
Notes: []
Task_2.2_API_Expansion:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.1_Users:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.2_Groups:
Status: "NOT_STARTED"
Completion: 0%
Subtask_2.2.3_Assets:
Status: "NOT_STARTED"
Completion: 0%
```
---
## 🔄 Development Workflow
### 1. Phase Kickoff
- [ ] Review phase objectives and requirements
- [ ] Set up tracking in CLAUDE.md
- [ ] Create feature branches for major components
- [ ] Schedule review checkpoints
### 2. During Development
- [ ] Update progress tracking after each task
- [ ] Run tests continuously (TDD approach)
- [ ] Update documentation as features are built
- [ ] Conduct peer reviews for critical code
- [ ] Performance benchmarking for new features
### 3. Phase Completion
- [ ] All tasks completed and tested
- [ ] Documentation comprehensive and reviewed
- [ ] Performance benchmarks meet targets
- [ ] Security scan passes
- [ ] Beta testing with real users
- [ ] Retrospective meeting
- [ ] Release preparation
---
## 📝 Testing Strategy
### Test Pyramid
```
E2E Tests (5%)
/ \
Integration (15%)
/ \
Unit Tests (80%)
```
### Testing Requirements by Phase
**Phase 2**:
- Unit: >95% coverage
- Integration: All CRUD operations
- Performance: Async vs sync benchmarks
- Security: Auth validation
**Phase 3**:
- Load: 10,000+ requests
- Chaos: Random failure injection
- Stability: 24+ hour runs
- Cache: Hit rate >80%
**Phase 4**:
- End-to-End: Complete workflows
- CLI: All commands tested
- Plugins: Custom plugin scenarios
---
## 📖 Documentation Strategy
### Documentation Hierarchy
1. **README.md** - Quick start and overview
2. **docs/getting_started.md** - Detailed installation and setup
3. **docs/api/** - Complete API reference
4. **docs/guides/** - Feature-specific guides
5. **examples/** - Working code examples
6. **CHANGELOG.md** - Version history
7. **CONTRIBUTING.md** - Development guide
### Documentation Requirements
Each feature must include:
- [ ] API reference with all parameters documented
- [ ] At least 3 usage examples (basic, intermediate, advanced)
- [ ] Common pitfalls and troubleshooting
- [ ] Performance considerations
- [ ] Security best practices
---
## 🚀 Release Strategy
### Pre-Release Checklist
**Code Quality**:
- [ ] All tests pass
- [ ] Coverage >90%
- [ ] No critical/high security issues
- [ ] Performance benchmarks meet targets
- [ ] Code review completed
**Documentation**:
- [ ] All APIs documented
- [ ] Examples updated
- [ ] CHANGELOG.md updated
- [ ] Migration guide (if breaking changes)
- [ ] README.md updated
**Testing**:
- [ ] Integration tests pass
- [ ] Load tests pass
- [ ] Beta testing complete
- [ ] No blocking bugs
**Process**:
- [ ] Version number updated
- [ ] Git tag created
- [ ] GitHub release notes prepared
- [ ] PyPI package prepared
### Release Communication
1. **Pre-release** (1 week before):
- Announce on GitHub Discussions
- Share release notes draft
- Request community feedback
2. **Release day**:
- Publish to GitHub
- Update documentation site
- Social media announcement
- Community notification
3. **Post-release** (1 week after):
- Monitor for critical bugs
- Respond to user feedback
- Plan hotfix if needed
---
## 🎯 Success Metrics
### Phase 2 Success Metrics
- [ ] Async client achieves >3x throughput
- [ ] All Wiki.js APIs have coverage
- [ ] >100 downloads in first month
- [ ] >10 GitHub stars
- [ ] Zero critical bugs after 2 weeks
### Phase 3 Success Metrics
- [ ] Cache hit rate >80%
- [ ] Batch operations >10x faster
- [ ] 99.9% uptime in production
- [ ] <100ms p95 response time
- [ ] >500 downloads/month
### Phase 4 Success Metrics
- [ ] CLI adoption by >30% of users
- [ ] >5 community plugins
- [ ] >1000 downloads/month
- [ ] >50 GitHub stars
- [ ] Enterprise customer deployments
---
## 🤝 Community Engagement
### Feedback Channels
- GitHub Issues for bugs
- GitHub Discussions for features
- Discord/Slack for real-time chat
- Monthly community calls
### Contribution Opportunities
- Bug fixes and improvements
- New API endpoints
- Documentation improvements
- Example projects
- Plugin development
---
## 📅 Timeline Summary
| Phase | Duration | Target Date | Key Deliverables |
|-------|----------|-------------|------------------|
| Phase 1 | ✅ Complete | ✅ Done | MVP with Pages API |
| Phase 2 | 3-4 weeks | Week 8 | Async + Full API Coverage |
| Phase 3 | 3-4 weeks | Week 12 | Production Reliability |
| Phase 4 | 4-5 weeks | Week 17 | Enterprise Features |
| **Total** | **~17 weeks** | **~4 months** | **v1.0.0 Release** |
---
## 🎓 Key Takeaways
1. **Quality First**: Every feature includes tests and documentation
2. **Incremental Value**: Each phase delivers real user value
3. **Backward Compatible**: No breaking changes without major version
4. **Community Driven**: Engage users throughout development
5. **Production Ready**: Focus on reliability, performance, security
---
**This improvement plan ensures the Wiki.js Python SDK evolves into a world-class, enterprise-ready solution while maintaining high quality standards throughout development.**
**Next Steps**:
1. Review and approve this plan
2. Update CLAUDE.md with Phase 2 details
3. Begin Phase 2 implementation
4. Establish continuous progress tracking