Files
leo-claude-mktplace/plugins/data-platform/commands/data-quality.md
lmiranda 9698e8724d feat(plugins): implement Sprint 4 commands (#241-#258)
Sprint 4 - Plugin Commands implementation adding 18 new user-facing
commands across 8 plugins as part of V5.2.0 Plugin Enhancements.

**projman:**
- #241: /sprint-diagram - Mermaid visualization of sprint issues

**pr-review:**
- #242: Confidence threshold config (PR_REVIEW_CONFIDENCE_THRESHOLD)
- #243: /pr-diff - Formatted diff with inline review comments

**data-platform:**
- #244: /data-quality - DataFrame quality checks (nulls, duplicates, outliers)
- #245: /lineage-viz - dbt lineage as Mermaid diagrams
- #246: /dbt-test - Formatted dbt test runner

**viz-platform:**
- #247: /chart-export - Export charts to PNG/SVG/PDF via kaleido
- #248: /accessibility-check - Color blind validation (WCAG contrast)
- #249: /breakpoints - Responsive layout configuration

**contract-validator:**
- #250: /dependency-graph - Plugin dependency visualization

**doc-guardian:**
- #251: /changelog-gen - Generate changelog from conventional commits
- #252: /doc-coverage - Documentation coverage metrics
- #253: /stale-docs - Flag outdated documentation

**claude-config-maintainer:**
- #254: /config-diff - Track CLAUDE.md changes over time
- #255: /config-lint - 31 lint rules for CLAUDE.md best practices

**cmdb-assistant:**
- #256: /cmdb-topology - Infrastructure topology diagrams
- #257: /change-audit - NetBox audit trail queries
- #258: /ip-conflicts - Detect IP conflicts and overlaps

Closes #241, #242, #243, #244, #245, #246, #247, #248, #249,
#250, #251, #252, #253, #254, #255, #256, #257, #258

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-28 12:02:26 -05:00

2.7 KiB

/data-quality - Data Quality Assessment

Comprehensive data quality check for DataFrames with pass/warn/fail scoring.

Usage

/data-quality <data_ref> [--strict]

Workflow

  1. Get data reference:

    • If no data_ref provided, use list_data to show available options
    • Validate the data_ref exists
  2. Null analysis:

    • Calculate null percentage per column
    • PASS: < 5% nulls
    • WARN: 5-20% nulls
    • FAIL: > 20% nulls
  3. Duplicate detection:

    • Check for fully duplicated rows
    • PASS: 0% duplicates
    • WARN: < 1% duplicates
    • FAIL: >= 1% duplicates
  4. Type consistency:

    • Identify mixed-type columns (object columns with mixed content)
    • Flag columns that could be numeric but contain strings
    • PASS: All columns have consistent types
    • FAIL: Mixed types detected
  5. Outlier detection (numeric columns):

    • Use IQR method (values beyond 1.5 * IQR)
    • Report percentage of outliers per column
    • PASS: < 1% outliers
    • WARN: 1-5% outliers
    • FAIL: > 5% outliers
  6. Generate quality report:

    • Overall quality score (0-100)
    • Per-column breakdown
    • Recommendations for remediation

Report Format

=== Data Quality Report ===
Dataset: sales_data
Rows: 10,000 | Columns: 15
Overall Score: 82/100 [PASS]

--- Column Analysis ---
| Column       | Nulls | Dups | Type     | Outliers | Status |
|--------------|-------|------|----------|----------|--------|
| customer_id  | 0.0%  | -    | int64    | 0.2%     | PASS   |
| email        | 2.3%  | -    | object   | -        | PASS   |
| amount       | 15.2% | -    | float64  | 3.1%     | WARN   |
| created_at   | 0.0%  | -    | datetime | -        | PASS   |

--- Issues Found ---
[WARN] Column 'amount': 15.2% null values (threshold: 5%)
[WARN] Column 'amount': 3.1% outliers detected
[FAIL] 1.2% duplicate rows detected (12 rows)

--- Recommendations ---
1. Investigate null values in 'amount' column
2. Review outliers in 'amount' - may be data entry errors
3. Remove or deduplicate 12 duplicate rows

Options

Flag Description
--strict Use stricter thresholds (WARN at 1% nulls, FAIL at 5%)

Examples

/data-quality sales_data
/data-quality df_customers --strict

Scoring

Component Weight Scoring
Nulls 30% 100 - (avg_null_pct * 2)
Duplicates 20% 100 - (dup_pct * 50)
Type consistency 25% 100 if clean, 0 if mixed
Outliers 25% 100 - (avg_outlier_pct * 10)

Final score: Weighted average, capped at 0-100

Available Tools

Use these MCP tools:

  • describe - Get statistical summary (for outlier detection)
  • head - Preview data
  • list_data - List available DataFrames