Compare commits
58 Commits
f69d0c15a7
...
developmen
| Author | SHA1 | Date | |
|---|---|---|---|
| 058d058975 | |||
| 0455ec69a0 | |||
| 9e216962b1 | |||
| dfa5f92d8a | |||
| 3bd2005c9d | |||
| 0c9769fd27 | |||
| cb908a18c3 | |||
| 558022f26e | |||
| 9e27fb8011 | |||
| cda2a078d9 | |||
| dd8de9810d | |||
| 56bcc1bb1d | |||
| ee0a7ef7ad | |||
| fd9850778e | |||
| 01e98103c7 | |||
| 62d1a52eed | |||
| e37611673f | |||
| 33306a911b | |||
| a5d6866d63 | |||
| f58b2f70e2 | |||
| 263b52d5e4 | |||
| f345d41535 | |||
| 14701f334c | |||
| 92763a17c4 | |||
| 546ee1cc92 | |||
| 9cc2cf0e00 | |||
| 28f239e8cd | |||
| c3de98c4a5 | |||
| eee015efac | |||
| 941305e71c | |||
| 54665bac63 | |||
| 3eb32a4766 | |||
| 69c4216cd5 | |||
| 6e00a17c05 | |||
| 8f3c5554f9 | |||
| 5839eabf1e | |||
| ebe48304d7 | |||
| 2fc2a1bdb5 | |||
| 6872aa510b | |||
| 9a1fc81f79 | |||
| cf6e874961 | |||
| 451dc10a10 | |||
| 193b9289b9 | |||
| 7a16e6d121 | |||
| ecc50e5d98 | |||
| ae3742630e | |||
| e70965b429 | |||
| 25954f17bb | |||
| bffd44a5a5 | |||
| bf6e392002 | |||
| d0f32edba7 | |||
| 4818c53fd2 | |||
| 1a878313f8 | |||
| 1eba95d4d1 | |||
| c9cf744d84 | |||
| 3054441630 | |||
| b6d210ec6b | |||
| 053acf6436 |
35
.gitea/workflows/ci.yml
Normal file
35
.gitea/workflows/ci.yml
Normal file
@@ -0,0 +1,35 @@
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- development
|
||||
- staging
|
||||
- main
|
||||
pull_request:
|
||||
branches:
|
||||
- development
|
||||
|
||||
jobs:
|
||||
lint-and-test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
pip install ruff pytest
|
||||
|
||||
- name: Run linter
|
||||
run: ruff check .
|
||||
|
||||
- name: Run tests
|
||||
run: pytest tests/ -v --tb=short
|
||||
44
.gitea/workflows/deploy-production.yml
Normal file
44
.gitea/workflows/deploy-production.yml
Normal file
@@ -0,0 +1,44 @@
|
||||
name: Deploy to Production
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Deploy to Production Server
|
||||
uses: appleboy/ssh-action@v1.0.3
|
||||
with:
|
||||
host: ${{ secrets.PROD_HOST }}
|
||||
username: ${{ secrets.PROD_USER }}
|
||||
key: ${{ secrets.PROD_SSH_KEY }}
|
||||
script: |
|
||||
set -euo pipefail
|
||||
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
echo "Pulling latest changes..."
|
||||
git fetch origin main
|
||||
git reset --hard origin/main
|
||||
|
||||
echo "Activating virtual environment..."
|
||||
source .venv/bin/activate
|
||||
|
||||
echo "Installing dependencies..."
|
||||
pip install -r requirements.txt --quiet
|
||||
|
||||
echo "Running dbt models..."
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
echo "Restarting application..."
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
echo "Waiting for health check..."
|
||||
sleep 10
|
||||
curl -f http://localhost:8050/health || exit 1
|
||||
|
||||
echo "Production deployment complete!"
|
||||
44
.gitea/workflows/deploy-staging.yml
Normal file
44
.gitea/workflows/deploy-staging.yml
Normal file
@@ -0,0 +1,44 @@
|
||||
name: Deploy to Staging
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- staging
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Deploy to Staging Server
|
||||
uses: appleboy/ssh-action@v1.0.3
|
||||
with:
|
||||
host: ${{ secrets.STAGING_HOST }}
|
||||
username: ${{ secrets.STAGING_USER }}
|
||||
key: ${{ secrets.STAGING_SSH_KEY }}
|
||||
script: |
|
||||
set -euo pipefail
|
||||
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
echo "Pulling latest changes..."
|
||||
git fetch origin staging
|
||||
git reset --hard origin/staging
|
||||
|
||||
echo "Activating virtual environment..."
|
||||
source .venv/bin/activate
|
||||
|
||||
echo "Installing dependencies..."
|
||||
pip install -r requirements.txt --quiet
|
||||
|
||||
echo "Running dbt models..."
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
echo "Restarting application..."
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
echo "Waiting for health check..."
|
||||
sleep 10
|
||||
curl -f http://localhost:8050/health || exit 1
|
||||
|
||||
echo "Staging deployment complete!"
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -198,3 +198,4 @@ cython_debug/
|
||||
# PyPI configuration file
|
||||
.pypirc
|
||||
|
||||
dbt/.user.yml
|
||||
|
||||
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.defaultInterpreterPath": "/home/leomiranda/WorkDev/personal/personal-portfolio/.venv/bin/python"
|
||||
}
|
||||
357
CLAUDE.md
357
CLAUDE.md
@@ -1,13 +1,56 @@
|
||||
# CLAUDE.md
|
||||
|
||||
## ⛔ MANDATORY BEHAVIOR RULES - READ FIRST
|
||||
|
||||
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
|
||||
|
||||
### 1. WHEN USER ASKS YOU TO CHECK SOMETHING - CHECK EVERYTHING
|
||||
- Search ALL locations, not just where you think it is
|
||||
- Check cache directories: `~/.claude/plugins/cache/`
|
||||
- Check installed: `~/.claude/plugins/marketplaces/`
|
||||
- Check source directories
|
||||
- **NEVER say "no" or "that's not the issue" without exhaustive verification**
|
||||
|
||||
### 2. WHEN USER SAYS SOMETHING IS WRONG - BELIEVE THEM
|
||||
- The user knows their system better than you
|
||||
- Investigate thoroughly before disagreeing
|
||||
- **Your confidence is often wrong. User's instincts are often right.**
|
||||
|
||||
### 3. NEVER SAY "DONE" WITHOUT VERIFICATION
|
||||
- Run the actual command/script to verify
|
||||
- Show the output to the user
|
||||
- **"Done" means VERIFIED WORKING, not "I made changes"**
|
||||
|
||||
### 4. SHOW EXACTLY WHAT USER ASKS FOR
|
||||
- If user asks for messages, show the MESSAGES
|
||||
- If user asks for code, show the CODE
|
||||
- **Do not interpret or summarize unless asked**
|
||||
|
||||
**FAILURE TO FOLLOW THESE RULES = WASTED USER TIME = UNACCEPTABLE**
|
||||
|
||||
---
|
||||
|
||||
|
||||
|
||||
## Mandatory Behavior Rules
|
||||
|
||||
**These rules are NON-NEGOTIABLE. Violating them wastes the user's time and money.**
|
||||
|
||||
1. **CHECK EVERYTHING** - Search ALL locations before saying "no" (cache, installed, source directories)
|
||||
2. **BELIEVE THE USER** - Investigate thoroughly before disagreeing; user instincts are often right
|
||||
3. **VERIFY BEFORE "DONE"** - Run commands, show output; "done" means verified working
|
||||
4. **SHOW EXACTLY WHAT'S ASKED** - Do not interpret or summarize unless requested
|
||||
|
||||
---
|
||||
|
||||
Working context for Claude Code on the Analytics Portfolio project.
|
||||
|
||||
---
|
||||
|
||||
## Project Status
|
||||
|
||||
**Current Sprint**: 9 (Neighbourhood Dashboard Transition)
|
||||
**Phase**: Toronto Neighbourhood Dashboard
|
||||
**Last Completed Sprint**: 9 (Neighbourhood Dashboard Transition)
|
||||
**Current State**: Ready for deployment sprint or new features
|
||||
**Branch**: `development` (feature branches merge here)
|
||||
|
||||
---
|
||||
@@ -17,15 +60,33 @@ Working context for Claude Code on the Analytics Portfolio project.
|
||||
### Run Commands
|
||||
|
||||
```bash
|
||||
# Setup & Database
|
||||
make setup # Install deps, create .env, init pre-commit
|
||||
make docker-up # Start PostgreSQL + PostGIS
|
||||
make docker-up # Start PostgreSQL + PostGIS (auto-detects x86/ARM)
|
||||
make docker-down # Stop containers
|
||||
make db-init # Initialize database schema
|
||||
make db-reset # Drop and recreate database (DESTRUCTIVE)
|
||||
|
||||
# Data Loading
|
||||
make load-data # Load all project data (currently: Toronto)
|
||||
make load-toronto # Load Toronto data from APIs
|
||||
|
||||
# Application
|
||||
make run # Start Dash dev server
|
||||
|
||||
# Testing & Quality
|
||||
make test # Run pytest
|
||||
make lint # Run ruff linter
|
||||
make format # Run ruff formatter
|
||||
make ci # Run all checks
|
||||
make typecheck # Run mypy type checker
|
||||
make ci # Run all checks (lint, typecheck, test)
|
||||
|
||||
# dbt
|
||||
make dbt-run # Run dbt models
|
||||
make dbt-test # Run dbt tests
|
||||
make dbt-docs # Generate and serve dbt documentation
|
||||
|
||||
# Run `make help` for full target list
|
||||
```
|
||||
|
||||
### Branch Workflow
|
||||
@@ -33,10 +94,7 @@ make ci # Run all checks
|
||||
1. Create feature branch FROM `development`: `git checkout -b feature/{sprint}-{description}`
|
||||
2. Work and commit on feature branch
|
||||
3. Merge INTO `development` when complete
|
||||
4. Delete the feature branch after merge (keep branches clean)
|
||||
5. `development` -> `staging` -> `main` for releases
|
||||
|
||||
**CRITICAL: NEVER DELETE the `development` branch. It is the main integration branch.**
|
||||
4. `development` -> `staging` -> `main` for releases
|
||||
|
||||
---
|
||||
|
||||
@@ -52,112 +110,44 @@ make ci # Run all checks
|
||||
|
||||
### Module Responsibilities
|
||||
|
||||
| Directory | Contains | Purpose |
|
||||
|-----------|----------|---------|
|
||||
| `schemas/` | Pydantic models | Data validation |
|
||||
| `models/` | SQLAlchemy ORM | Database persistence |
|
||||
| `parsers/` | API/CSV extraction | Raw data ingestion |
|
||||
| `loaders/` | Database operations | Data loading |
|
||||
| `figures/` | Chart factories | Plotly figure generation |
|
||||
| `callbacks/` | Dash callbacks | In `pages/{dashboard}/callbacks/` |
|
||||
| `errors/` | Exceptions + handlers | Error handling |
|
||||
|
||||
### Type Hints
|
||||
|
||||
Use Python 3.10+ style:
|
||||
```python
|
||||
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
|
||||
...
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
# errors/exceptions.py
|
||||
class PortfolioError(Exception):
|
||||
"""Base exception."""
|
||||
|
||||
class ParseError(PortfolioError):
|
||||
"""PDF/CSV parsing failed."""
|
||||
|
||||
class ValidationError(PortfolioError):
|
||||
"""Pydantic or business rule validation failed."""
|
||||
|
||||
class LoadError(PortfolioError):
|
||||
"""Database load operation failed."""
|
||||
```
|
||||
| Directory | Purpose |
|
||||
|-----------|---------|
|
||||
| `schemas/` | Pydantic models for data validation |
|
||||
| `models/` | SQLAlchemy ORM for database persistence |
|
||||
| `parsers/` | API/CSV extraction for raw data ingestion |
|
||||
| `loaders/` | Database operations for data loading |
|
||||
| `services/` | Query functions for dbt mart queries |
|
||||
| `figures/` | Chart factories for Plotly figure generation |
|
||||
| `errors/` | Custom exception classes (see `errors/exceptions.py`) |
|
||||
|
||||
### Code Standards
|
||||
|
||||
- Python 3.10+ type hints: `list[str]`, `dict[str, int] | None`
|
||||
- Single responsibility functions with verb naming
|
||||
- Early returns over deep nesting
|
||||
- Google-style docstrings only for non-obvious behavior
|
||||
- Module-level constants for magic values
|
||||
- Pydantic BaseSettings for runtime config
|
||||
|
||||
---
|
||||
|
||||
## Application Structure
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
├── app.py # Dash app factory with Pages routing
|
||||
├── config.py # Pydantic BaseSettings
|
||||
├── assets/ # CSS, images (auto-served)
|
||||
│ └── sidebar.css # Navigation styling
|
||||
├── callbacks/ # Global callbacks
|
||||
│ ├── sidebar.py # Sidebar toggle
|
||||
│ └── theme.py # Dark/light theme
|
||||
├── pages/
|
||||
│ ├── home.py # Bio landing page -> /
|
||||
│ ├── about.py # About page -> /about
|
||||
│ ├── contact.py # Contact form -> /contact
|
||||
│ ├── health.py # Health endpoint -> /health
|
||||
│ ├── projects.py # Project showcase -> /projects
|
||||
│ ├── resume.py # Resume/CV -> /resume
|
||||
│ ├── blog/
|
||||
│ │ ├── index.py # Blog listing -> /blog
|
||||
│ │ └── article.py # Blog article -> /blog/{slug}
|
||||
│ └── toronto/
|
||||
│ ├── dashboard.py # Dashboard -> /toronto
|
||||
│ ├── methodology.py # Methodology -> /toronto/methodology
|
||||
│ └── callbacks/ # Dashboard interactions
|
||||
├── components/ # Shared UI (sidebar, cards, controls)
|
||||
│ ├── metric_card.py # KPI card component
|
||||
│ ├── map_controls.py # Map control panel
|
||||
│ ├── sidebar.py # Navigation sidebar
|
||||
│ └── time_slider.py # Time range selector
|
||||
├── figures/ # Shared chart factories
|
||||
│ ├── choropleth.py # Map visualizations
|
||||
│ ├── summary_cards.py # KPI figures
|
||||
│ └── time_series.py # Trend charts
|
||||
├── content/ # Markdown content
|
||||
│ └── blog/ # Blog articles
|
||||
├── toronto/ # Toronto data logic
|
||||
│ ├── parsers/
|
||||
│ ├── loaders/
|
||||
│ ├── schemas/ # Pydantic
|
||||
│ ├── models/ # SQLAlchemy
|
||||
│ └── demo_data.py # Sample data
|
||||
├── utils/ # Utilities
|
||||
│ └── markdown_loader.py # Markdown processing
|
||||
└── errors/
|
||||
```
|
||||
**Entry Point:** `portfolio_app/app.py` (Dash app factory with Pages routing)
|
||||
|
||||
### URL Routing
|
||||
| Directory | Purpose |
|
||||
|-----------|---------|
|
||||
| `pages/` | Dash Pages (file-based routing) |
|
||||
| `pages/toronto/` | Toronto Dashboard (`tabs/` for layouts, `callbacks/` for interactions) |
|
||||
| `components/` | Shared UI components |
|
||||
| `figures/toronto/` | Toronto chart factories |
|
||||
| `toronto/` | Toronto data logic (parsers, loaders, schemas, models) |
|
||||
|
||||
| URL | Page | Sprint |
|
||||
|-----|------|--------|
|
||||
| `/` | Bio landing page | 2 |
|
||||
| `/about` | About page | 8 |
|
||||
| `/contact` | Contact form | 8 |
|
||||
| `/health` | Health endpoint | 8 |
|
||||
| `/projects` | Project showcase | 8 |
|
||||
| `/resume` | Resume/CV | 8 |
|
||||
| `/blog` | Blog listing | 8 |
|
||||
| `/blog/{slug}` | Blog article | 8 |
|
||||
| `/toronto` | Toronto Dashboard | 6 |
|
||||
| `/toronto/methodology` | Dashboard methodology | 6 |
|
||||
**Key URLs:** `/` (home), `/toronto` (dashboard), `/blog` (listing), `/blog/{slug}` (articles), `/health` (status)
|
||||
|
||||
### Multi-Dashboard Architecture
|
||||
|
||||
- **figures/**: Domain-namespaced (`figures/toronto/`, future: `figures/football/`)
|
||||
- **dbt models**: Domain subdirectories (`staging/toronto/`, `marts/toronto/`)
|
||||
- **Database schemas**: Domain-specific raw data (`raw_toronto`, future: `raw_football`)
|
||||
|
||||
---
|
||||
|
||||
@@ -169,43 +159,31 @@ portfolio_app/
|
||||
| Validation | Pydantic | >=2.0 |
|
||||
| ORM | SQLAlchemy | >=2.0 (2.0-style API only) |
|
||||
| Transformation | dbt-postgres | >=1.7 |
|
||||
| Data Processing | Pandas | >=2.1 |
|
||||
| Visualization | Dash + Plotly + dash-mantine-components | >=2.14 |
|
||||
| Geospatial | GeoPandas + Shapely | >=0.14 |
|
||||
| Visualization | Dash + Plotly | >=2.14 |
|
||||
| UI Components | dash-mantine-components | Latest stable |
|
||||
| Testing | pytest | >=7.0 |
|
||||
| Python | 3.11+ | Via pyenv |
|
||||
|
||||
**Notes**:
|
||||
- SQLAlchemy 2.0 + Pydantic 2.0 only (never mix 1.x APIs)
|
||||
- PostGIS extension required in database
|
||||
- Docker Compose V2 format (no `version` field)
|
||||
**Notes**: SQLAlchemy 2.0 + Pydantic 2.0 only. Docker Compose V2 format (no `version` field).
|
||||
|
||||
---
|
||||
|
||||
## Data Model Overview
|
||||
|
||||
### Geographic Reality (Toronto Housing)
|
||||
### Database Schemas
|
||||
|
||||
```
|
||||
City Neighbourhoods (158) - Primary geographic unit for analysis
|
||||
CMHC Zones (~20) - Rental data (Census Tract aligned)
|
||||
```
|
||||
| Schema | Purpose |
|
||||
|--------|---------|
|
||||
| `public` | Shared dimensions (dim_time) |
|
||||
| `raw_toronto` | Toronto-specific raw/dimension tables |
|
||||
| `stg_toronto` | Toronto dbt staging views |
|
||||
| `int_toronto` | Toronto dbt intermediate views |
|
||||
| `mart_toronto` | Toronto dbt mart tables |
|
||||
|
||||
### Star Schema
|
||||
|
||||
| Table | Type | Keys |
|
||||
|-------|------|------|
|
||||
| `fact_rentals` | Fact | -> dim_time, dim_cmhc_zone |
|
||||
| `dim_time` | Dimension | date_key (PK) |
|
||||
| `dim_cmhc_zone` | Dimension | zone_key (PK), geometry |
|
||||
| `dim_neighbourhood` | Dimension | neighbourhood_id (PK), geometry |
|
||||
| `dim_policy_event` | Dimension | event_id (PK) |
|
||||
|
||||
### dbt Layers
|
||||
### dbt Project: `portfolio`
|
||||
|
||||
| Layer | Naming | Purpose |
|
||||
|-------|--------|---------|
|
||||
| Shared | `stg_dimensions__*` | Cross-domain dimensions |
|
||||
| Staging | `stg_{source}__{entity}` | 1:1 source, cleaned, typed |
|
||||
| Intermediate | `int_{domain}__{transform}` | Business logic |
|
||||
| Marts | `mart_{domain}` | Final analytical tables |
|
||||
@@ -214,13 +192,12 @@ CMHC Zones (~20) - Rental data (Census Tract aligned)
|
||||
|
||||
## Deferred Features
|
||||
|
||||
**Stop and flag if a task seems to require these**:
|
||||
**Stop and flag if a task requires these**:
|
||||
|
||||
| Feature | Reason |
|
||||
|---------|--------|
|
||||
| Historical boundary reconciliation (140->158) | 2021+ data only for V1 |
|
||||
| ML prediction models | Energy project scope (future phase) |
|
||||
| Multi-project shared infrastructure | Build first, abstract second |
|
||||
|
||||
---
|
||||
|
||||
@@ -240,25 +217,123 @@ LOG_LEVEL=INFO
|
||||
|
||||
---
|
||||
|
||||
## Script Standards
|
||||
|
||||
All scripts in `scripts/`:
|
||||
- Include usage comments at top
|
||||
- Idempotent where possible
|
||||
- Exit codes: 0 = success, 1 = error
|
||||
- Use `set -euo pipefail` for bash
|
||||
- Log to stdout, errors to stderr
|
||||
|
||||
---
|
||||
|
||||
## Reference Documents
|
||||
|
||||
| Document | Location | Use When |
|
||||
|----------|----------|----------|
|
||||
| Project reference | `docs/PROJECT_REFERENCE.md` | Architecture decisions |
|
||||
| Dashboard vision | `docs/changes/Change-Toronto-Analysis.md` | Dashboard specification |
|
||||
| Implementation plan | `docs/changes/Change-Toronto-Analysis-Reviewed.md` | Sprint planning |
|
||||
| Developer guide | `docs/CONTRIBUTING.md` | How to add pages, tabs |
|
||||
| Lessons learned | `docs/project-lessons-learned/INDEX.md` | Past issues and solutions |
|
||||
| Deployment runbook | `docs/runbooks/deployment.md` | Deploying to environments |
|
||||
|
||||
---
|
||||
|
||||
*Last Updated: Sprint 9*
|
||||
## Plugin Reference
|
||||
|
||||
### Sprint Management: projman
|
||||
|
||||
**CRITICAL: Always use projman for sprint and task management.**
|
||||
|
||||
| Skill | Trigger | Purpose |
|
||||
|-------|---------|---------|
|
||||
| `/projman:sprint-plan` | New sprint/feature | Architecture analysis + Gitea issue creation |
|
||||
| `/projman:sprint-start` | Begin implementation | Load lessons learned, start execution |
|
||||
| `/projman:sprint-status` | Check progress | Review blockers and completion |
|
||||
| `/projman:sprint-close` | Sprint completion | Capture lessons learned |
|
||||
|
||||
**Default workflow**: `/projman:sprint-plan` before code -> create issues -> `/projman:sprint-start` -> track via Gitea -> `/projman:sprint-close`
|
||||
|
||||
**Gitea**: `personal-projects/personal-portfolio` at `gitea.hotserv.cloud`
|
||||
|
||||
### Data Platform: data-platform
|
||||
|
||||
Use for dbt, PostgreSQL, and PostGIS operations.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/data-platform:data-review` | Audit data integrity, schema validity, dbt compliance |
|
||||
| `/data-platform:data-gate` | CI/CD data quality gate (pass/fail) |
|
||||
|
||||
**When to use:** Schema changes, dbt model development, data loading, before merging data PRs.
|
||||
|
||||
**MCP tools available:** `pg_connect`, `pg_query`, `pg_tables`, `pg_columns`, `pg_schemas`, `st_*` (PostGIS), `dbt_*` operations.
|
||||
|
||||
### Visualization: viz-platform
|
||||
|
||||
Use for Dash/Mantine component validation and chart creation.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/viz-platform:component` | Inspect DMC component props and validation |
|
||||
| `/viz-platform:chart` | Create themed Plotly charts |
|
||||
| `/viz-platform:theme` | Apply/validate themes |
|
||||
| `/viz-platform:dashboard` | Create dashboard layouts |
|
||||
|
||||
**When to use:** Dashboard development, new visualizations, component prop lookup.
|
||||
|
||||
### Code Quality: code-sentinel
|
||||
|
||||
Use for security scanning and refactoring analysis.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/code-sentinel:security-scan` | Full security audit of codebase |
|
||||
| `/code-sentinel:refactor` | Apply refactoring patterns |
|
||||
| `/code-sentinel:refactor-dry` | Preview refactoring without applying |
|
||||
|
||||
**When to use:** Before major releases, after adding auth/data handling code, periodic audits.
|
||||
|
||||
### Documentation: doc-guardian
|
||||
|
||||
Use for documentation drift detection and synchronization.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/doc-guardian:doc-audit` | Scan project for documentation drift |
|
||||
| `/doc-guardian:doc-sync` | Synchronize pending documentation updates |
|
||||
|
||||
**When to use:** After significant code changes, before releases.
|
||||
|
||||
### Pull Requests: pr-review
|
||||
|
||||
Use for comprehensive PR review with multiple analysis perspectives.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/pr-review:initial-setup` | Configure PR review for project |
|
||||
| Triggered automatically | Security, performance, maintainability, test analysis |
|
||||
|
||||
**When to use:** Before merging significant PRs to `development` or `main`.
|
||||
|
||||
### Requirement Clarification: clarity-assist
|
||||
|
||||
Use when requirements are ambiguous or need decomposition.
|
||||
|
||||
**When to use:** Unclear specifications, complex feature requests, conflicting requirements.
|
||||
|
||||
### Contract Validation: contract-validator
|
||||
|
||||
Use for plugin interface validation.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/contract-validator:agent-check` | Quick agent definition validation |
|
||||
| `/contract-validator:full-validation` | Full plugin contract validation |
|
||||
|
||||
**When to use:** When modifying plugin integrations or agent definitions.
|
||||
|
||||
### Git Workflow: git-flow
|
||||
|
||||
Use for standardized git operations.
|
||||
|
||||
| Skill | Purpose |
|
||||
|-------|---------|
|
||||
| `/git-flow:commit` | Auto-generated conventional commit |
|
||||
| `/git-flow:branch-start` | Create feature/fix/chore branch |
|
||||
| `/git-flow:git-status` | Comprehensive status with recommendations |
|
||||
|
||||
**When to use:** Complex merge scenarios, branch management, standardized commits.
|
||||
|
||||
---
|
||||
|
||||
*Last Updated: February 2026*
|
||||
|
||||
21
LICENSE
Normal file
21
LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024-2025 Leo Miranda
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
65
Makefile
65
Makefile
@@ -1,13 +1,25 @@
|
||||
.PHONY: setup docker-up docker-down db-init run test dbt-run dbt-test lint format ci deploy clean help
|
||||
.PHONY: setup docker-up docker-down db-init load-data load-all load-toronto load-toronto-only seed-data run test dbt-run dbt-test lint format ci deploy clean help logs run-detached etl-toronto
|
||||
|
||||
# Default target
|
||||
.DEFAULT_GOAL := help
|
||||
|
||||
# Environment
|
||||
PYTHON := python3
|
||||
PIP := pip
|
||||
VENV := .venv
|
||||
PYTHON := $(VENV)/bin/python3
|
||||
PIP := $(VENV)/bin/pip
|
||||
DOCKER_COMPOSE := docker compose
|
||||
|
||||
# Architecture detection for Docker images
|
||||
ARCH := $(shell uname -m)
|
||||
ifeq ($(ARCH),aarch64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else ifeq ($(ARCH),arm64)
|
||||
POSTGIS_IMAGE := imresamu/postgis:16-3.4
|
||||
else
|
||||
POSTGIS_IMAGE := postgis/postgis:16-3.4
|
||||
endif
|
||||
export POSTGIS_IMAGE
|
||||
|
||||
# Colors for output
|
||||
BLUE := \033[0;34m
|
||||
GREEN := \033[0;32m
|
||||
@@ -39,6 +51,7 @@ setup: ## Install dependencies, create .env, init pre-commit
|
||||
|
||||
docker-up: ## Start PostgreSQL + PostGIS containers
|
||||
@echo "$(GREEN)Starting database containers...$(NC)"
|
||||
@echo "$(BLUE)Architecture: $(ARCH) -> Using image: $(POSTGIS_IMAGE)$(NC)"
|
||||
$(DOCKER_COMPOSE) up -d
|
||||
@echo "$(GREEN)Waiting for database to be ready...$(NC)"
|
||||
@sleep 3
|
||||
@@ -57,11 +70,7 @@ docker-logs: ## View container logs
|
||||
|
||||
db-init: ## Initialize database schema
|
||||
@echo "$(GREEN)Initializing database schema...$(NC)"
|
||||
@if [ -f scripts/db/init.sh ]; then \
|
||||
bash scripts/db/init.sh; \
|
||||
else \
|
||||
echo "$(YELLOW)scripts/db/init.sh not found - skipping$(NC)"; \
|
||||
fi
|
||||
$(PYTHON) scripts/db/init_schema.py
|
||||
|
||||
db-reset: ## Drop and recreate database (DESTRUCTIVE)
|
||||
@echo "$(YELLOW)WARNING: This will delete all data!$(NC)"
|
||||
@@ -71,6 +80,27 @@ db-reset: ## Drop and recreate database (DESTRUCTIVE)
|
||||
@sleep 3
|
||||
$(MAKE) db-init
|
||||
|
||||
# Domain-specific data loading
|
||||
load-toronto: ## Load Toronto data from APIs
|
||||
@echo "$(GREEN)Loading Toronto neighbourhood data...$(NC)"
|
||||
$(PYTHON) scripts/data/load_toronto_data.py
|
||||
@echo "$(GREEN)Seeding Toronto development data...$(NC)"
|
||||
$(PYTHON) scripts/data/seed_amenity_data.py
|
||||
|
||||
load-toronto-only: ## Load Toronto data without running dbt or seeding
|
||||
@echo "$(GREEN)Loading Toronto data (skip dbt)...$(NC)"
|
||||
$(PYTHON) scripts/data/load_toronto_data.py --skip-dbt
|
||||
|
||||
# Aggregate data loading
|
||||
load-data: load-toronto ## Load all project data (currently: Toronto)
|
||||
@echo "$(GREEN)All data loaded!$(NC)"
|
||||
|
||||
load-all: load-data ## Alias for load-data
|
||||
|
||||
seed-data: ## Seed sample development data (amenities, median_age)
|
||||
@echo "$(GREEN)Seeding development data...$(NC)"
|
||||
$(PYTHON) scripts/data/seed_amenity_data.py
|
||||
|
||||
# =============================================================================
|
||||
# Application
|
||||
# =============================================================================
|
||||
@@ -97,15 +127,15 @@ test-cov: ## Run pytest with coverage
|
||||
|
||||
dbt-run: ## Run dbt models
|
||||
@echo "$(GREEN)Running dbt models...$(NC)"
|
||||
cd dbt && dbt run
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt run --profiles-dir .
|
||||
|
||||
dbt-test: ## Run dbt tests
|
||||
@echo "$(GREEN)Running dbt tests...$(NC)"
|
||||
cd dbt && dbt test
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt test --profiles-dir .
|
||||
|
||||
dbt-docs: ## Generate dbt documentation
|
||||
@echo "$(GREEN)Generating dbt docs...$(NC)"
|
||||
cd dbt && dbt docs generate && dbt docs serve
|
||||
@set -a && . ./.env && set +a && cd dbt && dbt docs generate --profiles-dir . && dbt docs serve --profiles-dir .
|
||||
|
||||
# =============================================================================
|
||||
# Code Quality
|
||||
@@ -131,6 +161,19 @@ ci: ## Run all checks (lint, typecheck, test)
|
||||
$(MAKE) test
|
||||
@echo "$(GREEN)All checks passed!$(NC)"
|
||||
|
||||
# =============================================================================
|
||||
# Operations
|
||||
# =============================================================================
|
||||
|
||||
logs: ## Follow docker compose logs (usage: make logs or make logs SERVICE=postgres)
|
||||
@./scripts/logs.sh $(SERVICE)
|
||||
|
||||
run-detached: ## Start containers and wait for health check
|
||||
@./scripts/run-detached.sh
|
||||
|
||||
etl-toronto: ## Run Toronto ETL pipeline (usage: make etl-toronto MODE=--full)
|
||||
@./scripts/etl/toronto.sh $(MODE)
|
||||
|
||||
# =============================================================================
|
||||
# Deployment
|
||||
# =============================================================================
|
||||
|
||||
186
README.md
186
README.md
@@ -1,36 +1,82 @@
|
||||
# Analytics Portfolio
|
||||
|
||||
A data analytics portfolio showcasing end-to-end data engineering, visualization, and analysis capabilities.
|
||||
[](https://gitea.hotserv.cloud/lmiranda/personal-portfolio/actions)
|
||||
|
||||
## Projects
|
||||
**Live Demo:** [leodata.science](https://leodata.science)
|
||||
|
||||
### Toronto Housing Dashboard
|
||||
A personal portfolio website showcasing data engineering and visualization capabilities, featuring an interactive Toronto Neighbourhood Dashboard.
|
||||
|
||||
An interactive choropleth dashboard analyzing Toronto's housing market using multi-source data integration.
|
||||
## Live Pages
|
||||
|
||||
**Features:**
|
||||
- Purchase market analysis from TRREB monthly reports
|
||||
- Rental market analysis from CMHC annual surveys
|
||||
- Interactive choropleth maps by district/zone
|
||||
- Time series visualization with policy event annotations
|
||||
- Purchase/Rental mode toggle
|
||||
| Route | Page | Description |
|
||||
|-------|------|-------------|
|
||||
| `/` | Home | Bio landing page |
|
||||
| `/about` | About | Background and experience |
|
||||
| `/projects` | Projects | Portfolio project showcase |
|
||||
| `/resume` | Resume | Professional CV |
|
||||
| `/contact` | Contact | Contact form |
|
||||
| `/blog` | Blog | Technical articles |
|
||||
| `/blog/{slug}` | Article | Individual blog posts |
|
||||
| `/toronto` | Toronto Dashboard | Neighbourhood analysis (5 tabs) |
|
||||
| `/toronto/methodology` | Methodology | Dashboard data sources and methods |
|
||||
| `/health` | Health | API health check endpoint |
|
||||
|
||||
**Data Sources:**
|
||||
- [TRREB Market Watch](https://trreb.ca/market-data/market-watch/) - Monthly purchase statistics
|
||||
- [CMHC Rental Market Survey](https://www.cmhc-schl.gc.ca/professionals/housing-markets-data-and-research/housing-data/data-tables/rental-market) - Annual rental data
|
||||
## Toronto Neighbourhood Dashboard
|
||||
|
||||
**Tech Stack:**
|
||||
- Python 3.11+ / Dash / Plotly
|
||||
- PostgreSQL + PostGIS
|
||||
- dbt for data transformation
|
||||
- Pydantic for validation
|
||||
- SQLAlchemy 2.0
|
||||
An interactive choropleth dashboard analyzing Toronto's 158 official neighbourhoods across five dimensions:
|
||||
|
||||
- **Overview**: Composite livability scores, income vs safety scatter
|
||||
- **Housing**: Affordability index, rent trends, dwelling types
|
||||
- **Safety**: Crime rates, breakdowns by type, trend analysis
|
||||
- **Demographics**: Income distribution, age pyramids, population density
|
||||
- **Amenities**: Parks, schools, transit accessibility
|
||||
|
||||
**Data Sources**:
|
||||
- City of Toronto Open Data Portal (neighbourhoods, census profiles, amenities)
|
||||
- Toronto Police Service (crime statistics)
|
||||
- CMHC Rental Market Survey (rental data by zone)
|
||||
|
||||
## Architecture
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
subgraph Sources
|
||||
A1[City of Toronto API]
|
||||
A2[Toronto Police API]
|
||||
A3[CMHC Data]
|
||||
end
|
||||
|
||||
subgraph ETL
|
||||
B1[Parsers]
|
||||
B2[Loaders]
|
||||
end
|
||||
|
||||
subgraph Database
|
||||
C1[(PostgreSQL/PostGIS)]
|
||||
C2[dbt Models]
|
||||
end
|
||||
|
||||
subgraph Application
|
||||
D1[Dash App]
|
||||
D2[Plotly Figures]
|
||||
end
|
||||
|
||||
A1 & A2 & A3 --> B1 --> B2 --> C1 --> C2 --> D1 --> D2
|
||||
```
|
||||
|
||||
**Pipeline Stages:**
|
||||
- **Sources**: External APIs and data files (City of Toronto, Toronto Police, CMHC)
|
||||
- **ETL**: Python parsers extract and validate data; loaders persist to database
|
||||
- **Database**: PostgreSQL with PostGIS for geospatial; dbt transforms raw → staging → marts
|
||||
- **Application**: Dash serves interactive dashboards with Plotly visualizations
|
||||
|
||||
For detailed database schema, see [docs/DATABASE_SCHEMA.md](docs/DATABASE_SCHEMA.md).
|
||||
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
# Clone and setup
|
||||
git clone https://github.com/lmiranda/personal-portfolio.git
|
||||
git clone https://gitea.hotserv.cloud/lmiranda/personal-portfolio.git
|
||||
cd personal-portfolio
|
||||
|
||||
# Install dependencies and configure environment
|
||||
@@ -55,48 +101,75 @@ portfolio_app/
|
||||
├── app.py # Dash app factory
|
||||
├── config.py # Pydantic settings
|
||||
├── pages/
|
||||
│ ├── home.py # Bio landing page (/)
|
||||
│ └── toronto/ # Toronto dashboard (/toronto)
|
||||
│ ├── home.py # Bio landing (/)
|
||||
│ ├── about.py # About page
|
||||
│ ├── contact.py # Contact form
|
||||
│ ├── projects.py # Project showcase
|
||||
│ ├── resume.py # Resume/CV
|
||||
│ ├── blog/ # Blog system
|
||||
│ │ ├── index.py # Article listing
|
||||
│ │ └── article.py # Article renderer
|
||||
│ └── toronto/ # Toronto dashboard
|
||||
│ ├── dashboard.py # Main layout with tabs
|
||||
│ ├── methodology.py # Data documentation
|
||||
│ ├── tabs/ # Tab layouts (5)
|
||||
│ └── callbacks/ # Interaction logic
|
||||
├── components/ # Shared UI components
|
||||
├── figures/ # Plotly figure factories
|
||||
└── toronto/ # Toronto data logic
|
||||
├── parsers/ # PDF/CSV extraction
|
||||
├── loaders/ # Database operations
|
||||
├── schemas/ # Pydantic models
|
||||
└── models/ # SQLAlchemy ORM
|
||||
├── figures/
|
||||
│ └── toronto/ # Toronto figure factories
|
||||
├── content/
|
||||
│ └── blog/ # Markdown blog articles
|
||||
├── toronto/ # Toronto data logic
|
||||
│ ├── parsers/ # API data extraction
|
||||
│ ├── loaders/ # Database operations
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ └── models/ # SQLAlchemy ORM (raw_toronto schema)
|
||||
└── errors/ # Exception handling
|
||||
|
||||
dbt/
|
||||
dbt/ # dbt project: portfolio
|
||||
├── models/
|
||||
│ ├── staging/ # 1:1 source tables
|
||||
│ ├── intermediate/ # Business logic
|
||||
│ └── marts/ # Analytical tables
|
||||
│ ├── shared/ # Cross-domain dimensions
|
||||
│ ├── staging/toronto/ # Toronto staging models
|
||||
│ ├── intermediate/toronto/ # Toronto intermediate models
|
||||
│ └── marts/toronto/ # Toronto analytical tables
|
||||
|
||||
notebooks/
|
||||
└── toronto/ # Toronto documentation (15 notebooks)
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
|
||||
docs/
|
||||
├── PROJECT_REFERENCE.md # Architecture reference
|
||||
├── CONTRIBUTING.md # Developer guide
|
||||
└── project-lessons-learned/
|
||||
```
|
||||
|
||||
## Tech Stack
|
||||
|
||||
| Layer | Technology |
|
||||
|-------|------------|
|
||||
| Database | PostgreSQL 16 + PostGIS |
|
||||
| Validation | Pydantic 2.x |
|
||||
| ORM | SQLAlchemy 2.x |
|
||||
| Transformation | dbt-postgres |
|
||||
| Data Processing | Pandas, GeoPandas |
|
||||
| Visualization | Dash + Plotly |
|
||||
| UI Components | dash-mantine-components |
|
||||
| Testing | pytest |
|
||||
| Python | 3.11+ |
|
||||
|
||||
## Development
|
||||
|
||||
```bash
|
||||
make test # Run tests
|
||||
make lint # Run linter
|
||||
make test # Run pytest
|
||||
make lint # Run ruff linter
|
||||
make format # Format code
|
||||
make ci # Run all checks
|
||||
```
|
||||
|
||||
## Data Pipeline
|
||||
|
||||
```
|
||||
Raw Files (PDF/Excel)
|
||||
↓
|
||||
Parsers (pdfplumber, pandas)
|
||||
↓
|
||||
Pydantic Validation
|
||||
↓
|
||||
SQLAlchemy Loaders
|
||||
↓
|
||||
PostgreSQL + PostGIS
|
||||
↓
|
||||
dbt Transformations
|
||||
↓
|
||||
Dash Visualization
|
||||
make dbt-run # Run dbt models
|
||||
make dbt-test # Run dbt tests
|
||||
```
|
||||
|
||||
## Environment Variables
|
||||
@@ -109,12 +182,19 @@ POSTGRES_USER=portfolio
|
||||
POSTGRES_PASSWORD=<secure>
|
||||
POSTGRES_DB=portfolio
|
||||
DASH_DEBUG=true
|
||||
SECRET_KEY=<random>
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
- **For developers**: See `docs/CONTRIBUTING.md` for setup and contribution guidelines
|
||||
- **For Claude Code**: See `CLAUDE.md` for AI assistant context
|
||||
- **Architecture**: See `docs/PROJECT_REFERENCE.md` for technical details
|
||||
|
||||
## License
|
||||
|
||||
MIT
|
||||
|
||||
## Author
|
||||
|
||||
Leo Miranda - [GitHub](https://github.com/lmiranda) | [LinkedIn](https://linkedin.com/in/yourprofile)
|
||||
Leo Miranda
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
name: 'toronto_housing'
|
||||
version: '1.0.0'
|
||||
name: 'portfolio'
|
||||
config-version: 2
|
||||
|
||||
profile: 'toronto_housing'
|
||||
profile: 'portfolio'
|
||||
|
||||
model-paths: ["models"]
|
||||
analysis-paths: ["analyses"]
|
||||
@@ -16,13 +15,19 @@ clean-targets:
|
||||
- "dbt_packages"
|
||||
|
||||
models:
|
||||
toronto_housing:
|
||||
portfolio:
|
||||
shared:
|
||||
+materialized: view
|
||||
+schema: shared
|
||||
staging:
|
||||
toronto:
|
||||
+materialized: view
|
||||
+schema: staging
|
||||
+schema: stg_toronto
|
||||
intermediate:
|
||||
toronto:
|
||||
+materialized: view
|
||||
+schema: intermediate
|
||||
+schema: int_toronto
|
||||
marts:
|
||||
toronto:
|
||||
+materialized: table
|
||||
+schema: marts
|
||||
+schema: mart_toronto
|
||||
|
||||
11
dbt/macros/generate_schema_name.sql
Normal file
11
dbt/macros/generate_schema_name.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
-- Override dbt default schema name generation.
|
||||
-- Use the custom schema name directly instead of
|
||||
-- concatenating with the target schema.
|
||||
-- See: https://docs.getdbt.com/docs/build/custom-schemas
|
||||
{% macro generate_schema_name(custom_schema_name, node) %}
|
||||
{%- if custom_schema_name is none -%}
|
||||
{{ target.schema }}
|
||||
{%- else -%}
|
||||
{{ custom_schema_name | trim }}
|
||||
{%- endif -%}
|
||||
{% endmacro %}
|
||||
0
dbt/macros/toronto/.gitkeep
Normal file
0
dbt/macros/toronto/.gitkeep
Normal file
@@ -1,13 +0,0 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: int_rentals__annual
|
||||
description: "Rental data enriched with time and zone dimensions"
|
||||
columns:
|
||||
- name: rental_id
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
tests:
|
||||
- not_null
|
||||
87
dbt/models/intermediate/toronto/_intermediate.yml
Normal file
87
dbt/models/intermediate/toronto/_intermediate.yml
Normal file
@@ -0,0 +1,87 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: int_rentals__annual
|
||||
description: "Rental data enriched with time and zone dimensions"
|
||||
columns:
|
||||
- name: rental_id
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: int_neighbourhood__demographics
|
||||
description: "Combined census demographics with neighbourhood attributes"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: census_year
|
||||
description: "Census year"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: income_quintile
|
||||
description: "Income quintile (1-5, city-wide)"
|
||||
|
||||
- name: int_neighbourhood__housing
|
||||
description: "Housing indicators combining census and rental data"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Reference year"
|
||||
- name: rent_to_income_pct
|
||||
description: "Rent as percentage of median income"
|
||||
- name: is_affordable
|
||||
description: "Boolean: rent <= 30% of income"
|
||||
|
||||
- name: int_neighbourhood__crime_summary
|
||||
description: "Aggregated crime with year-over-year trends"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Statistics year"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: crime_rate_per_100k
|
||||
description: "Total crime rate per 100K population"
|
||||
- name: yoy_change_pct
|
||||
description: "Year-over-year change percentage"
|
||||
|
||||
- name: int_neighbourhood__amenity_scores
|
||||
description: "Normalized amenities per capita and per area"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Reference year"
|
||||
- name: total_amenities_per_1000
|
||||
description: "Total amenities per 1000 population"
|
||||
- name: amenities_per_sqkm
|
||||
description: "Total amenities per square km"
|
||||
|
||||
- name: int_rentals__neighbourhood_allocated
|
||||
description: "CMHC rental data allocated to neighbourhoods via area weights"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Survey year"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: avg_rent_2bed
|
||||
description: "Weighted average 2-bedroom rent"
|
||||
- name: vacancy_rate
|
||||
description: "Weighted average vacancy rate"
|
||||
60
dbt/models/intermediate/toronto/int_census__toronto_cma.sql
Normal file
60
dbt/models/intermediate/toronto/int_census__toronto_cma.sql
Normal file
@@ -0,0 +1,60 @@
|
||||
-- Intermediate: Toronto CMA census statistics by year
|
||||
-- Provides city-wide averages for metrics not available at neighbourhood level
|
||||
-- Used when neighbourhood-level data is unavailable (e.g., median household income)
|
||||
-- Grain: One row per year
|
||||
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
-- Census data is only available for 2016 and 2021
|
||||
-- Map each analysis year to the appropriate census year
|
||||
year_to_census as (
|
||||
select
|
||||
y.year,
|
||||
case
|
||||
when y.year <= 2018 then 2016
|
||||
else 2021
|
||||
end as census_year
|
||||
from years y
|
||||
),
|
||||
|
||||
-- Toronto CMA median household income from Statistics Canada
|
||||
-- Source: Census Profile Table 98-316-X2021001
|
||||
-- 2016: $65,829 (from Census Profile)
|
||||
-- 2021: $84,000 (from Census Profile)
|
||||
cma_income as (
|
||||
select 2016 as census_year, 65829 as median_household_income union all
|
||||
select 2021 as census_year, 84000 as median_household_income
|
||||
),
|
||||
|
||||
-- City-wide aggregates from loaded neighbourhood data
|
||||
city_aggregates as (
|
||||
select
|
||||
census_year,
|
||||
sum(population) as total_population,
|
||||
avg(population_density) as avg_population_density,
|
||||
avg(unemployment_rate) as avg_unemployment_rate
|
||||
from census
|
||||
where population is not null
|
||||
group by census_year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
y.year,
|
||||
y.census_year,
|
||||
ci.median_household_income,
|
||||
ca.total_population,
|
||||
ca.avg_population_density,
|
||||
ca.avg_unemployment_rate
|
||||
from year_to_census y
|
||||
left join cma_income ci on y.census_year = ci.census_year
|
||||
left join city_aggregates ca on y.census_year = ca.census_year
|
||||
)
|
||||
|
||||
select * from final
|
||||
@@ -0,0 +1,79 @@
|
||||
-- Intermediate: Normalized amenities per 1000 population
|
||||
-- Pivots amenity types and calculates per-capita metrics
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
amenities as (
|
||||
select * from {{ ref('stg_toronto__amenities') }}
|
||||
),
|
||||
|
||||
-- Aggregate amenity types
|
||||
amenities_by_year as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
amenity_year as year,
|
||||
sum(case when amenity_type = 'Parks' then amenity_count else 0 end) as parks_count,
|
||||
sum(case when amenity_type = 'Schools' then amenity_count else 0 end) as schools_count,
|
||||
sum(case when amenity_type = 'Transit Stops' then amenity_count else 0 end) as transit_count,
|
||||
sum(case when amenity_type = 'Libraries' then amenity_count else 0 end) as libraries_count,
|
||||
sum(case when amenity_type = 'Community Centres' then amenity_count else 0 end) as community_centres_count,
|
||||
sum(case when amenity_type = 'Recreation' then amenity_count else 0 end) as recreation_count,
|
||||
sum(amenity_count) as total_amenities
|
||||
from amenities
|
||||
group by neighbourhood_id, amenity_year
|
||||
),
|
||||
|
||||
amenity_scores as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
n.population,
|
||||
n.land_area_sqkm,
|
||||
|
||||
coalesce(a.year, 2021) as year,
|
||||
|
||||
-- Raw counts
|
||||
a.parks_count,
|
||||
a.schools_count,
|
||||
a.transit_count,
|
||||
a.libraries_count,
|
||||
a.community_centres_count,
|
||||
a.recreation_count,
|
||||
a.total_amenities,
|
||||
|
||||
-- Per 1000 population
|
||||
case when n.population > 0
|
||||
then round(a.parks_count::numeric / n.population * 1000, 3)
|
||||
else null
|
||||
end as parks_per_1000,
|
||||
|
||||
case when n.population > 0
|
||||
then round(a.schools_count::numeric / n.population * 1000, 3)
|
||||
else null
|
||||
end as schools_per_1000,
|
||||
|
||||
case when n.population > 0
|
||||
then round(a.transit_count::numeric / n.population * 1000, 3)
|
||||
else null
|
||||
end as transit_per_1000,
|
||||
|
||||
case when n.population > 0
|
||||
then round(a.total_amenities::numeric / n.population * 1000, 3)
|
||||
else null
|
||||
end as total_amenities_per_1000,
|
||||
|
||||
-- Per square km
|
||||
case when n.land_area_sqkm > 0
|
||||
then round(a.total_amenities::numeric / n.land_area_sqkm, 2)
|
||||
else null
|
||||
end as amenities_per_sqkm
|
||||
|
||||
from neighbourhoods n
|
||||
left join amenities_by_year a on n.neighbourhood_id = a.neighbourhood_id
|
||||
)
|
||||
|
||||
select * from amenity_scores
|
||||
@@ -0,0 +1,83 @@
|
||||
-- Intermediate: Aggregated crime by neighbourhood with YoY change
|
||||
-- Pivots crime types and calculates year-over-year trends
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
crime as (
|
||||
select * from {{ ref('stg_toronto__crime') }}
|
||||
),
|
||||
|
||||
-- Aggregate crime types
|
||||
crime_by_year as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
crime_year as year,
|
||||
sum(incident_count) as total_incidents,
|
||||
sum(case when crime_type = 'assault' then incident_count else 0 end) as assault_count,
|
||||
sum(case when crime_type = 'auto_theft' then incident_count else 0 end) as auto_theft_count,
|
||||
sum(case when crime_type = 'break_and_enter' then incident_count else 0 end) as break_enter_count,
|
||||
sum(case when crime_type = 'robbery' then incident_count else 0 end) as robbery_count,
|
||||
sum(case when crime_type = 'theft_over' then incident_count else 0 end) as theft_over_count,
|
||||
sum(case when crime_type = 'homicide' then incident_count else 0 end) as homicide_count,
|
||||
avg(rate_per_100k) as avg_rate_per_100k
|
||||
from crime
|
||||
group by neighbourhood_id, crime_year
|
||||
),
|
||||
|
||||
-- Add year-over-year changes
|
||||
with_yoy as (
|
||||
select
|
||||
c.*,
|
||||
lag(c.total_incidents, 1) over (
|
||||
partition by c.neighbourhood_id
|
||||
order by c.year
|
||||
) as prev_year_incidents,
|
||||
round(
|
||||
(c.total_incidents - lag(c.total_incidents, 1) over (
|
||||
partition by c.neighbourhood_id
|
||||
order by c.year
|
||||
))::numeric /
|
||||
nullif(lag(c.total_incidents, 1) over (
|
||||
partition by c.neighbourhood_id
|
||||
order by c.year
|
||||
), 0) * 100,
|
||||
2
|
||||
) as yoy_change_pct
|
||||
from crime_by_year c
|
||||
),
|
||||
|
||||
crime_summary as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
n.population,
|
||||
|
||||
w.year,
|
||||
w.total_incidents,
|
||||
w.assault_count,
|
||||
w.auto_theft_count,
|
||||
w.break_enter_count,
|
||||
w.robbery_count,
|
||||
w.theft_over_count,
|
||||
w.homicide_count,
|
||||
w.yoy_change_pct,
|
||||
|
||||
-- Crime rate per 100K population (use source data avg, or calculate if population available)
|
||||
coalesce(
|
||||
w.avg_rate_per_100k,
|
||||
case
|
||||
when n.population > 0
|
||||
then round(w.total_incidents::numeric / n.population * 100000, 2)
|
||||
else null
|
||||
end
|
||||
) as crime_rate_per_100k
|
||||
|
||||
from neighbourhoods n
|
||||
inner join with_yoy w on n.neighbourhood_id = w.neighbourhood_id
|
||||
)
|
||||
|
||||
select * from crime_summary
|
||||
@@ -0,0 +1,45 @@
|
||||
-- Intermediate: Combined census demographics by neighbourhood
|
||||
-- Joins neighbourhoods with census data for demographic analysis
|
||||
-- Grain: One row per neighbourhood per census year
|
||||
|
||||
with neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
demographics as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
n.land_area_sqkm,
|
||||
|
||||
-- Use census_year from census data, or fall back to dim_neighbourhood's year
|
||||
coalesce(c.census_year, n.census_year, 2021) as census_year,
|
||||
c.population,
|
||||
c.population_density,
|
||||
c.median_household_income,
|
||||
c.average_household_income,
|
||||
c.median_age,
|
||||
c.unemployment_rate,
|
||||
c.pct_bachelors_or_higher as education_bachelors_pct,
|
||||
c.average_dwelling_value,
|
||||
|
||||
-- Tenure mix
|
||||
c.pct_owner_occupied,
|
||||
c.pct_renter_occupied,
|
||||
|
||||
-- Income quintile (city-wide comparison)
|
||||
ntile(5) over (
|
||||
partition by c.census_year
|
||||
order by c.median_household_income
|
||||
) as income_quintile
|
||||
|
||||
from neighbourhoods n
|
||||
left join census c on n.neighbourhood_id = c.neighbourhood_id
|
||||
)
|
||||
|
||||
select * from demographics
|
||||
@@ -0,0 +1,56 @@
|
||||
-- Intermediate: Housing indicators by neighbourhood
|
||||
-- Combines census housing data with allocated CMHC rental data
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
allocated_rentals as (
|
||||
select * from {{ ref('int_rentals__neighbourhood_allocated') }}
|
||||
),
|
||||
|
||||
housing as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
|
||||
coalesce(r.year, c.census_year, 2021) as year,
|
||||
|
||||
-- Census housing metrics
|
||||
c.pct_owner_occupied,
|
||||
c.pct_renter_occupied,
|
||||
c.average_dwelling_value,
|
||||
c.median_household_income,
|
||||
|
||||
-- Allocated rental metrics (weighted average from CMHC zones)
|
||||
r.avg_rent_2bed,
|
||||
r.vacancy_rate,
|
||||
|
||||
-- Affordability calculations
|
||||
case
|
||||
when c.median_household_income > 0 and r.avg_rent_2bed > 0
|
||||
then round((r.avg_rent_2bed * 12 / c.median_household_income) * 100, 2)
|
||||
else null
|
||||
end as rent_to_income_pct,
|
||||
|
||||
-- Affordability threshold (30% of income)
|
||||
case
|
||||
when c.median_household_income > 0 and r.avg_rent_2bed > 0
|
||||
then r.avg_rent_2bed * 12 <= c.median_household_income * 0.30
|
||||
else null
|
||||
end as is_affordable
|
||||
|
||||
from neighbourhoods n
|
||||
left join census c on n.neighbourhood_id = c.neighbourhood_id
|
||||
left join allocated_rentals r
|
||||
on n.neighbourhood_id = r.neighbourhood_id
|
||||
and r.year = c.census_year
|
||||
)
|
||||
|
||||
select * from housing
|
||||
@@ -0,0 +1,73 @@
|
||||
-- Intermediate: CMHC rentals allocated to neighbourhoods via area weights
|
||||
-- Disaggregates zone-level rental data to neighbourhood level
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with crosswalk as (
|
||||
select * from {{ ref('stg_cmhc__zone_crosswalk') }}
|
||||
),
|
||||
|
||||
rentals as (
|
||||
select * from {{ ref('int_rentals__annual') }}
|
||||
),
|
||||
|
||||
neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
-- Allocate rental metrics to neighbourhoods using area weights
|
||||
allocated as (
|
||||
select
|
||||
c.neighbourhood_id,
|
||||
r.year,
|
||||
r.bedroom_type,
|
||||
|
||||
-- Weighted average rent (using area weight)
|
||||
sum(r.avg_rent * c.area_weight) as weighted_avg_rent,
|
||||
sum(r.median_rent * c.area_weight) as weighted_median_rent,
|
||||
sum(c.area_weight) as total_weight,
|
||||
|
||||
-- Weighted vacancy rate
|
||||
sum(r.vacancy_rate * c.area_weight) / nullif(sum(c.area_weight), 0) as vacancy_rate,
|
||||
|
||||
-- Weighted rental universe
|
||||
sum(r.rental_universe * c.area_weight) as rental_units_estimate
|
||||
|
||||
from crosswalk c
|
||||
inner join rentals r on c.cmhc_zone_code = r.zone_code
|
||||
group by c.neighbourhood_id, r.year, r.bedroom_type
|
||||
),
|
||||
|
||||
-- Pivot to get 2-bedroom as primary metric
|
||||
pivoted as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
year,
|
||||
max(case when bedroom_type = '2bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = '1bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = 'bachelor' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = '3bed' then weighted_avg_rent / nullif(total_weight, 0) end) as avg_rent_3bed,
|
||||
avg(vacancy_rate) as vacancy_rate,
|
||||
sum(rental_units_estimate) as total_rental_units
|
||||
from allocated
|
||||
group by neighbourhood_id, year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
|
||||
p.year,
|
||||
round(p.avg_rent_bachelor::numeric, 2) as avg_rent_bachelor,
|
||||
round(p.avg_rent_1bed::numeric, 2) as avg_rent_1bed,
|
||||
round(p.avg_rent_2bed::numeric, 2) as avg_rent_2bed,
|
||||
round(p.avg_rent_3bed::numeric, 2) as avg_rent_3bed,
|
||||
round(p.vacancy_rate::numeric, 2) as vacancy_rate,
|
||||
round(p.total_rental_units::numeric, 0) as total_rental_units
|
||||
|
||||
from neighbourhoods n
|
||||
inner join pivoted p on n.neighbourhood_id = p.neighbourhood_id
|
||||
)
|
||||
|
||||
select * from final
|
||||
25
dbt/models/intermediate/toronto/int_rentals__toronto_cma.sql
Normal file
25
dbt/models/intermediate/toronto/int_rentals__toronto_cma.sql
Normal file
@@ -0,0 +1,25 @@
|
||||
-- Intermediate: Toronto CMA rental metrics by year
|
||||
-- Aggregates rental data to city-wide averages by year
|
||||
-- Source: StatCan CMHC data at CMA level
|
||||
-- Grain: One row per year
|
||||
|
||||
with rentals as (
|
||||
select * from {{ ref('stg_cmhc__rentals') }}
|
||||
),
|
||||
|
||||
-- Pivot bedroom types to columns
|
||||
yearly_rentals as (
|
||||
select
|
||||
year,
|
||||
max(case when bedroom_type = 'bachelor' then avg_rent end) as avg_rent_bachelor,
|
||||
max(case when bedroom_type = '1bed' then avg_rent end) as avg_rent_1bed,
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_2bed,
|
||||
max(case when bedroom_type = '3bed' then avg_rent end) as avg_rent_3bed,
|
||||
-- Use 2-bedroom as standard reference
|
||||
max(case when bedroom_type = '2bed' then avg_rent end) as avg_rent_standard,
|
||||
max(vacancy_rate) as vacancy_rate
|
||||
from rentals
|
||||
group by year
|
||||
)
|
||||
|
||||
select * from yearly_rentals
|
||||
11
dbt/models/intermediate/toronto/int_year_spine.sql
Normal file
11
dbt/models/intermediate/toronto/int_year_spine.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
-- Intermediate: Year spine for analysis
|
||||
-- Creates a row for each year from 2014-2025
|
||||
-- Used to drive time-series analysis across all data sources
|
||||
|
||||
with years as (
|
||||
-- Generate years from available data sources
|
||||
-- Crime data: 2014-2024, Rentals: 2019-2025
|
||||
select generate_series(2014, 2025) as year
|
||||
)
|
||||
|
||||
select year from years
|
||||
@@ -1,11 +0,0 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: mart_toronto_rentals
|
||||
description: "Final mart for Toronto rental market analysis by zone and time"
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique rental record identifier"
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
135
dbt/models/marts/toronto/_marts.yml
Normal file
135
dbt/models/marts/toronto/_marts.yml
Normal file
@@ -0,0 +1,135 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: mart_toronto_rentals
|
||||
description: "Final mart for Toronto rental market analysis by zone and time"
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique rental record identifier"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
|
||||
- name: mart_neighbourhood_overview
|
||||
description: "Neighbourhood overview with composite livability score"
|
||||
meta:
|
||||
dashboard_tab: Overview
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
- name: livability_score
|
||||
description: "Composite score: safety (30%), affordability (40%), amenities (30%)"
|
||||
- name: safety_score
|
||||
description: "Safety component score (0-100)"
|
||||
- name: affordability_score
|
||||
description: "Affordability component score (0-100)"
|
||||
- name: amenity_score
|
||||
description: "Amenity component score (0-100)"
|
||||
|
||||
- name: mart_neighbourhood_housing
|
||||
description: "Housing and affordability metrics by neighbourhood"
|
||||
meta:
|
||||
dashboard_tab: Housing
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
- name: rent_to_income_pct
|
||||
description: "Rent as percentage of median income"
|
||||
- name: affordability_index
|
||||
description: "100 = city average affordability"
|
||||
- name: rent_yoy_change_pct
|
||||
description: "Year-over-year rent change"
|
||||
|
||||
- name: mart_neighbourhood_safety
|
||||
description: "Crime rates and safety metrics by neighbourhood"
|
||||
meta:
|
||||
dashboard_tab: Safety
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
- name: crime_rate_per_100k
|
||||
description: "Total crime rate per 100K population"
|
||||
- name: crime_index
|
||||
description: "100 = city average crime rate"
|
||||
- name: safety_tier
|
||||
description: "Safety tier (1=safest, 5=highest crime)"
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
|
||||
- name: mart_neighbourhood_demographics
|
||||
description: "Demographics and income metrics by neighbourhood"
|
||||
meta:
|
||||
dashboard_tab: Demographics
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
- name: median_household_income
|
||||
description: "Median household income"
|
||||
- name: income_index
|
||||
description: "100 = city average income"
|
||||
- name: income_quintile
|
||||
description: "Income quintile (1-5)"
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
|
||||
- name: mart_neighbourhood_amenities
|
||||
description: "Amenity access metrics by neighbourhood"
|
||||
meta:
|
||||
dashboard_tab: Amenities
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood identifier"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry for mapping"
|
||||
- name: total_amenities_per_1000
|
||||
description: "Total amenities per 1000 population"
|
||||
- name: amenity_index
|
||||
description: "100 = city average amenities"
|
||||
- name: amenity_tier
|
||||
description: "Amenity tier (1=best, 5=lowest)"
|
||||
data_tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
89
dbt/models/marts/toronto/mart_neighbourhood_amenities.sql
Normal file
89
dbt/models/marts/toronto/mart_neighbourhood_amenities.sql
Normal file
@@ -0,0 +1,89 @@
|
||||
-- Mart: Neighbourhood Amenities Analysis
|
||||
-- Dashboard Tab: Amenities
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with amenities as (
|
||||
select * from {{ ref('int_neighbourhood__amenity_scores') }}
|
||||
),
|
||||
|
||||
-- City-wide averages for comparison
|
||||
city_avg as (
|
||||
select
|
||||
year,
|
||||
avg(parks_per_1000) as city_avg_parks,
|
||||
avg(schools_per_1000) as city_avg_schools,
|
||||
avg(transit_per_1000) as city_avg_transit,
|
||||
avg(total_amenities_per_1000) as city_avg_total_amenities
|
||||
from amenities
|
||||
group by year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
a.neighbourhood_id,
|
||||
a.neighbourhood_name,
|
||||
a.geometry,
|
||||
a.population,
|
||||
a.land_area_sqkm,
|
||||
a.year,
|
||||
|
||||
-- Raw counts
|
||||
a.parks_count,
|
||||
a.schools_count,
|
||||
a.transit_count,
|
||||
a.libraries_count,
|
||||
a.community_centres_count,
|
||||
a.recreation_count,
|
||||
a.total_amenities,
|
||||
|
||||
-- Per 1000 population
|
||||
a.parks_per_1000,
|
||||
a.schools_per_1000,
|
||||
a.transit_per_1000,
|
||||
a.total_amenities_per_1000,
|
||||
|
||||
-- Per square km
|
||||
a.amenities_per_sqkm,
|
||||
|
||||
-- City averages
|
||||
round(ca.city_avg_parks::numeric, 3) as city_avg_parks_per_1000,
|
||||
round(ca.city_avg_schools::numeric, 3) as city_avg_schools_per_1000,
|
||||
round(ca.city_avg_transit::numeric, 3) as city_avg_transit_per_1000,
|
||||
|
||||
-- Amenity index (100 = city average)
|
||||
case
|
||||
when ca.city_avg_total_amenities > 0
|
||||
then round(a.total_amenities_per_1000 / ca.city_avg_total_amenities * 100, 1)
|
||||
else null
|
||||
end as amenity_index,
|
||||
|
||||
-- Category indices
|
||||
case
|
||||
when ca.city_avg_parks > 0
|
||||
then round(a.parks_per_1000 / ca.city_avg_parks * 100, 1)
|
||||
else null
|
||||
end as parks_index,
|
||||
|
||||
case
|
||||
when ca.city_avg_schools > 0
|
||||
then round(a.schools_per_1000 / ca.city_avg_schools * 100, 1)
|
||||
else null
|
||||
end as schools_index,
|
||||
|
||||
case
|
||||
when ca.city_avg_transit > 0
|
||||
then round(a.transit_per_1000 / ca.city_avg_transit * 100, 1)
|
||||
else null
|
||||
end as transit_index,
|
||||
|
||||
-- Amenity tier (1 = best, 5 = lowest)
|
||||
ntile(5) over (
|
||||
partition by a.year
|
||||
order by a.total_amenities_per_1000 desc
|
||||
) as amenity_tier
|
||||
|
||||
from amenities a
|
||||
left join city_avg ca on a.year = ca.year
|
||||
)
|
||||
|
||||
select * from final
|
||||
81
dbt/models/marts/toronto/mart_neighbourhood_demographics.sql
Normal file
81
dbt/models/marts/toronto/mart_neighbourhood_demographics.sql
Normal file
@@ -0,0 +1,81 @@
|
||||
-- Mart: Neighbourhood Demographics Analysis
|
||||
-- Dashboard Tab: Demographics
|
||||
-- Grain: One row per neighbourhood per census year
|
||||
|
||||
with demographics as (
|
||||
select * from {{ ref('int_neighbourhood__demographics') }}
|
||||
),
|
||||
|
||||
-- City-wide averages for comparison
|
||||
city_avg as (
|
||||
select
|
||||
census_year,
|
||||
avg(median_household_income) as city_avg_income,
|
||||
avg(median_age) as city_avg_age,
|
||||
avg(unemployment_rate) as city_avg_unemployment,
|
||||
avg(education_bachelors_pct) as city_avg_education,
|
||||
avg(population_density) as city_avg_density
|
||||
from demographics
|
||||
group by census_year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
d.neighbourhood_id,
|
||||
d.neighbourhood_name,
|
||||
d.geometry,
|
||||
d.census_year as year,
|
||||
|
||||
-- Population
|
||||
d.population,
|
||||
d.land_area_sqkm,
|
||||
d.population_density,
|
||||
|
||||
-- Income
|
||||
d.median_household_income,
|
||||
d.average_household_income,
|
||||
d.income_quintile,
|
||||
|
||||
-- Income index (100 = city average)
|
||||
case
|
||||
when ca.city_avg_income > 0
|
||||
then round(d.median_household_income / ca.city_avg_income * 100, 1)
|
||||
else null
|
||||
end as income_index,
|
||||
|
||||
-- Demographics
|
||||
d.median_age,
|
||||
d.unemployment_rate,
|
||||
d.education_bachelors_pct,
|
||||
|
||||
-- Age index (100 = city average)
|
||||
case
|
||||
when ca.city_avg_age > 0
|
||||
then round(d.median_age / ca.city_avg_age * 100, 1)
|
||||
else null
|
||||
end as age_index,
|
||||
|
||||
-- Housing tenure
|
||||
d.pct_owner_occupied,
|
||||
d.pct_renter_occupied,
|
||||
d.average_dwelling_value,
|
||||
|
||||
-- Diversity index (using tenure mix as proxy - higher rental = more diverse typically)
|
||||
round(
|
||||
1 - (
|
||||
power(d.pct_owner_occupied / 100, 2) +
|
||||
power(d.pct_renter_occupied / 100, 2)
|
||||
),
|
||||
3
|
||||
) * 100 as tenure_diversity_index,
|
||||
|
||||
-- City comparisons
|
||||
round(ca.city_avg_income::numeric, 2) as city_avg_income,
|
||||
round(ca.city_avg_age::numeric, 1) as city_avg_age,
|
||||
round(ca.city_avg_unemployment::numeric, 2) as city_avg_unemployment
|
||||
|
||||
from demographics d
|
||||
left join city_avg ca on d.census_year = ca.census_year
|
||||
)
|
||||
|
||||
select * from final
|
||||
93
dbt/models/marts/toronto/mart_neighbourhood_housing.sql
Normal file
93
dbt/models/marts/toronto/mart_neighbourhood_housing.sql
Normal file
@@ -0,0 +1,93 @@
|
||||
-- Mart: Neighbourhood Housing Analysis
|
||||
-- Dashboard Tab: Housing
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with housing as (
|
||||
select * from {{ ref('int_neighbourhood__housing') }}
|
||||
),
|
||||
|
||||
rentals as (
|
||||
select * from {{ ref('int_rentals__neighbourhood_allocated') }}
|
||||
),
|
||||
|
||||
demographics as (
|
||||
select * from {{ ref('int_neighbourhood__demographics') }}
|
||||
),
|
||||
|
||||
-- Add year-over-year rent changes
|
||||
with_yoy as (
|
||||
select
|
||||
h.*,
|
||||
r.avg_rent_bachelor,
|
||||
r.avg_rent_1bed,
|
||||
r.avg_rent_3bed,
|
||||
r.total_rental_units,
|
||||
d.income_quintile,
|
||||
|
||||
-- Previous year rent for YoY calculation
|
||||
lag(h.avg_rent_2bed, 1) over (
|
||||
partition by h.neighbourhood_id
|
||||
order by h.year
|
||||
) as prev_year_rent_2bed
|
||||
|
||||
from housing h
|
||||
left join rentals r
|
||||
on h.neighbourhood_id = r.neighbourhood_id
|
||||
and h.year = r.year
|
||||
left join demographics d
|
||||
on h.neighbourhood_id = d.neighbourhood_id
|
||||
and h.year = d.census_year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
geometry,
|
||||
year,
|
||||
|
||||
-- Tenure mix
|
||||
pct_owner_occupied,
|
||||
pct_renter_occupied,
|
||||
|
||||
-- Housing values
|
||||
average_dwelling_value,
|
||||
median_household_income,
|
||||
|
||||
-- Rental metrics
|
||||
avg_rent_bachelor,
|
||||
avg_rent_1bed,
|
||||
avg_rent_2bed,
|
||||
avg_rent_3bed,
|
||||
vacancy_rate,
|
||||
total_rental_units,
|
||||
|
||||
-- Affordability
|
||||
rent_to_income_pct,
|
||||
is_affordable,
|
||||
|
||||
-- Affordability index (100 = city average)
|
||||
round(
|
||||
rent_to_income_pct / nullif(
|
||||
avg(rent_to_income_pct) over (partition by year),
|
||||
0
|
||||
) * 100,
|
||||
1
|
||||
) as affordability_index,
|
||||
|
||||
-- Year-over-year rent change
|
||||
case
|
||||
when prev_year_rent_2bed > 0
|
||||
then round(
|
||||
(avg_rent_2bed - prev_year_rent_2bed) / prev_year_rent_2bed * 100,
|
||||
2
|
||||
)
|
||||
else null
|
||||
end as rent_yoy_change_pct,
|
||||
|
||||
income_quintile
|
||||
|
||||
from with_yoy
|
||||
)
|
||||
|
||||
select * from final
|
||||
153
dbt/models/marts/toronto/mart_neighbourhood_overview.sql
Normal file
153
dbt/models/marts/toronto/mart_neighbourhood_overview.sql
Normal file
@@ -0,0 +1,153 @@
|
||||
-- Mart: Neighbourhood Overview with Composite Livability Score
|
||||
-- Dashboard Tab: Overview
|
||||
-- Grain: One row per neighbourhood per year
|
||||
-- Time spine: Years 2014-2025 (driven by crime/rental data availability)
|
||||
|
||||
with years as (
|
||||
select * from {{ ref('int_year_spine') }}
|
||||
),
|
||||
|
||||
neighbourhoods as (
|
||||
select * from {{ ref('stg_toronto__neighbourhoods') }}
|
||||
),
|
||||
|
||||
-- Create base: all neighbourhoods × all years
|
||||
neighbourhood_years as (
|
||||
select
|
||||
n.neighbourhood_id,
|
||||
n.neighbourhood_name,
|
||||
n.geometry,
|
||||
y.year
|
||||
from neighbourhoods n
|
||||
cross join years y
|
||||
),
|
||||
|
||||
-- Census data (available for 2016, 2021)
|
||||
-- For each year, use the most recent census data available
|
||||
census as (
|
||||
select * from {{ ref('stg_toronto__census') }}
|
||||
),
|
||||
|
||||
census_mapped as (
|
||||
select
|
||||
ny.neighbourhood_id,
|
||||
ny.year,
|
||||
c.population,
|
||||
c.unemployment_rate,
|
||||
c.pct_bachelors_or_higher as education_bachelors_pct
|
||||
from neighbourhood_years ny
|
||||
left join census c on ny.neighbourhood_id = c.neighbourhood_id
|
||||
-- Use census year <= analysis year, prefer most recent
|
||||
and c.census_year = (
|
||||
select max(c2.census_year)
|
||||
from {{ ref('stg_toronto__census') }} c2
|
||||
where c2.neighbourhood_id = ny.neighbourhood_id
|
||||
and c2.census_year <= ny.year
|
||||
)
|
||||
),
|
||||
|
||||
-- CMA-level census data (for income - not available at neighbourhood level)
|
||||
cma_census as (
|
||||
select * from {{ ref('int_census__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Crime data (2014-2024)
|
||||
crime as (
|
||||
select * from {{ ref('int_neighbourhood__crime_summary') }}
|
||||
),
|
||||
|
||||
-- Rentals (2019-2025) - CMA level applied to all neighbourhoods
|
||||
rentals as (
|
||||
select * from {{ ref('int_rentals__toronto_cma') }}
|
||||
),
|
||||
|
||||
-- Compute scores
|
||||
scored as (
|
||||
select
|
||||
ny.neighbourhood_id,
|
||||
ny.neighbourhood_name,
|
||||
ny.geometry,
|
||||
ny.year,
|
||||
cm.population,
|
||||
-- Use CMA-level income (neighbourhood-level not available in Toronto Open Data)
|
||||
cma.median_household_income,
|
||||
|
||||
-- Safety score: inverse of crime rate (higher = safer)
|
||||
case
|
||||
when cr.crime_rate_per_100k is not null
|
||||
then 100 - percent_rank() over (
|
||||
partition by ny.year
|
||||
order by cr.crime_rate_per_100k
|
||||
) * 100
|
||||
else null
|
||||
end as safety_score,
|
||||
|
||||
-- Affordability score: inverse of rent-to-income ratio
|
||||
-- Using CMA-level income since neighbourhood-level not available
|
||||
case
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then 100 - percent_rank() over (
|
||||
partition by ny.year
|
||||
order by (r.avg_rent_standard * 12 / cma.median_household_income)
|
||||
) * 100
|
||||
else null
|
||||
end as affordability_score,
|
||||
|
||||
-- Raw metrics
|
||||
cr.crime_rate_per_100k,
|
||||
case
|
||||
when cma.median_household_income > 0 and r.avg_rent_standard > 0
|
||||
then round((r.avg_rent_standard * 12 / cma.median_household_income) * 100, 2)
|
||||
else null
|
||||
end as rent_to_income_pct,
|
||||
r.avg_rent_standard as avg_rent_2bed,
|
||||
r.vacancy_rate
|
||||
|
||||
from neighbourhood_years ny
|
||||
left join census_mapped cm
|
||||
on ny.neighbourhood_id = cm.neighbourhood_id
|
||||
and ny.year = cm.year
|
||||
left join cma_census cma
|
||||
on ny.year = cma.year
|
||||
left join crime cr
|
||||
on ny.neighbourhood_id = cr.neighbourhood_id
|
||||
and ny.year = cr.year
|
||||
left join rentals r
|
||||
on ny.year = r.year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
neighbourhood_name,
|
||||
geometry,
|
||||
year,
|
||||
population,
|
||||
median_household_income,
|
||||
|
||||
-- Component scores (0-100)
|
||||
round(safety_score::numeric, 1) as safety_score,
|
||||
round(affordability_score::numeric, 1) as affordability_score,
|
||||
-- TODO: Replace with actual amenity score when fact_amenities is populated
|
||||
-- Currently uses neutral placeholder (50.0) which affects livability_score accuracy
|
||||
50.0 as amenity_score,
|
||||
|
||||
-- Composite livability score: safety (40%), affordability (40%), amenities (20%)
|
||||
round(
|
||||
(coalesce(safety_score, 50) * 0.40 +
|
||||
coalesce(affordability_score, 50) * 0.40 +
|
||||
50 * 0.20)::numeric,
|
||||
1
|
||||
) as livability_score,
|
||||
|
||||
-- Raw metrics
|
||||
crime_rate_per_100k,
|
||||
rent_to_income_pct,
|
||||
avg_rent_2bed,
|
||||
vacancy_rate,
|
||||
null::numeric as total_amenities_per_1000
|
||||
|
||||
from scored
|
||||
)
|
||||
|
||||
select * from final
|
||||
78
dbt/models/marts/toronto/mart_neighbourhood_safety.sql
Normal file
78
dbt/models/marts/toronto/mart_neighbourhood_safety.sql
Normal file
@@ -0,0 +1,78 @@
|
||||
-- Mart: Neighbourhood Safety Analysis
|
||||
-- Dashboard Tab: Safety
|
||||
-- Grain: One row per neighbourhood per year
|
||||
|
||||
with crime as (
|
||||
select * from {{ ref('int_neighbourhood__crime_summary') }}
|
||||
),
|
||||
|
||||
-- City-wide averages for comparison
|
||||
city_avg as (
|
||||
select
|
||||
year,
|
||||
avg(crime_rate_per_100k) as city_avg_crime_rate,
|
||||
avg(assault_count) as city_avg_assault,
|
||||
avg(auto_theft_count) as city_avg_auto_theft,
|
||||
avg(break_enter_count) as city_avg_break_enter
|
||||
from crime
|
||||
group by year
|
||||
),
|
||||
|
||||
final as (
|
||||
select
|
||||
c.neighbourhood_id,
|
||||
c.neighbourhood_name,
|
||||
c.geometry,
|
||||
c.population,
|
||||
c.year,
|
||||
|
||||
-- Total crime
|
||||
c.total_incidents,
|
||||
c.crime_rate_per_100k,
|
||||
c.yoy_change_pct as crime_yoy_change_pct,
|
||||
|
||||
-- Crime breakdown
|
||||
c.assault_count,
|
||||
c.auto_theft_count,
|
||||
c.break_enter_count,
|
||||
c.robbery_count,
|
||||
c.theft_over_count,
|
||||
c.homicide_count,
|
||||
|
||||
-- Per 100K rates by type
|
||||
case when c.population > 0
|
||||
then round(c.assault_count::numeric / c.population * 100000, 2)
|
||||
else null
|
||||
end as assault_rate_per_100k,
|
||||
|
||||
case when c.population > 0
|
||||
then round(c.auto_theft_count::numeric / c.population * 100000, 2)
|
||||
else null
|
||||
end as auto_theft_rate_per_100k,
|
||||
|
||||
case when c.population > 0
|
||||
then round(c.break_enter_count::numeric / c.population * 100000, 2)
|
||||
else null
|
||||
end as break_enter_rate_per_100k,
|
||||
|
||||
-- Comparison to city average
|
||||
round(ca.city_avg_crime_rate::numeric, 2) as city_avg_crime_rate,
|
||||
|
||||
-- Crime index (100 = city average)
|
||||
case
|
||||
when ca.city_avg_crime_rate > 0
|
||||
then round(c.crime_rate_per_100k / ca.city_avg_crime_rate * 100, 1)
|
||||
else null
|
||||
end as crime_index,
|
||||
|
||||
-- Safety tier based on crime rate percentile
|
||||
ntile(5) over (
|
||||
partition by c.year
|
||||
order by c.crime_rate_per_100k desc
|
||||
) as safety_tier
|
||||
|
||||
from crime c
|
||||
left join city_avg ca on c.year = ca.year
|
||||
)
|
||||
|
||||
select * from final
|
||||
33
dbt/models/shared/_shared.yml
Normal file
33
dbt/models/shared/_shared.yml
Normal file
@@ -0,0 +1,33 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: stg_dimensions__time
|
||||
description: "Staged time dimension - shared across all projects"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMM format)"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: full_date
|
||||
description: "First day of month"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: year
|
||||
description: "Calendar year"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: month
|
||||
description: "Month number (1-12)"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: quarter
|
||||
description: "Quarter (1-4)"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: month_name
|
||||
description: "Month name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: is_month_start
|
||||
description: "Always true (monthly grain)"
|
||||
25
dbt/models/shared/_sources.yml
Normal file
25
dbt/models/shared/_sources.yml
Normal file
@@ -0,0 +1,25 @@
|
||||
version: 2
|
||||
|
||||
sources:
|
||||
- name: shared
|
||||
description: "Shared dimension tables used across all dashboards"
|
||||
database: portfolio
|
||||
schema: public
|
||||
tables:
|
||||
- name: dim_time
|
||||
description: "Time dimension (monthly grain) - shared across all projects"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMM format)"
|
||||
- name: full_date
|
||||
description: "First day of month"
|
||||
- name: year
|
||||
description: "Calendar year"
|
||||
- name: month
|
||||
description: "Month number (1-12)"
|
||||
- name: quarter
|
||||
description: "Quarter (1-4)"
|
||||
- name: month_name
|
||||
description: "Month name"
|
||||
- name: is_month_start
|
||||
description: "Always true (monthly grain)"
|
||||
@@ -1,9 +1,10 @@
|
||||
-- Staged time dimension
|
||||
-- Source: dim_time table
|
||||
-- Source: shared.dim_time table
|
||||
-- Grain: One row per month
|
||||
-- Note: Shared dimension used across all dashboard projects
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'dim_time') }}
|
||||
select * from {{ source('shared', 'dim_time') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -1,43 +0,0 @@
|
||||
version: 2
|
||||
|
||||
sources:
|
||||
- name: toronto_housing
|
||||
description: "Toronto housing data loaded from CMHC and City of Toronto sources"
|
||||
database: portfolio
|
||||
schema: public
|
||||
tables:
|
||||
- name: fact_rentals
|
||||
description: "CMHC annual rental survey data by zone and bedroom type"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: date_key
|
||||
description: "Foreign key to dim_time"
|
||||
- name: zone_key
|
||||
description: "Foreign key to dim_cmhc_zone"
|
||||
|
||||
- name: dim_time
|
||||
description: "Time dimension (monthly grain)"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Primary key (YYYYMMDD format)"
|
||||
|
||||
- name: dim_cmhc_zone
|
||||
description: "CMHC zone dimension with geometry"
|
||||
columns:
|
||||
- name: zone_key
|
||||
description: "Primary key"
|
||||
- name: zone_code
|
||||
description: "CMHC zone code"
|
||||
|
||||
- name: dim_neighbourhood
|
||||
description: "City of Toronto neighbourhoods (158 official boundaries)"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Primary key"
|
||||
|
||||
- name: dim_policy_event
|
||||
description: "Housing policy events for annotation"
|
||||
columns:
|
||||
- name: event_id
|
||||
description: "Primary key"
|
||||
@@ -1,42 +0,0 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: stg_cmhc__rentals
|
||||
description: "Staged CMHC rental market data from fact_rentals"
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique identifier for rental record"
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: date_key
|
||||
description: "Date dimension key (YYYYMMDD)"
|
||||
tests:
|
||||
- not_null
|
||||
- name: zone_key
|
||||
description: "CMHC zone dimension key"
|
||||
tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_dimensions__time
|
||||
description: "Staged time dimension"
|
||||
columns:
|
||||
- name: date_key
|
||||
description: "Date dimension key (YYYYMMDD)"
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
|
||||
- name: stg_dimensions__cmhc_zones
|
||||
description: "Staged CMHC zone dimension"
|
||||
columns:
|
||||
- name: zone_key
|
||||
description: "Zone dimension key"
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
description: "CMHC zone code"
|
||||
tests:
|
||||
- unique
|
||||
- not_null
|
||||
@@ -1,18 +0,0 @@
|
||||
-- Staged CMHC zone dimension
|
||||
-- Source: dim_cmhc_zone table
|
||||
-- Grain: One row per zone
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'dim_cmhc_zone') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
zone_key,
|
||||
zone_code,
|
||||
zone_name,
|
||||
geometry
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
93
dbt/models/staging/toronto/_sources.yml
Normal file
93
dbt/models/staging/toronto/_sources.yml
Normal file
@@ -0,0 +1,93 @@
|
||||
version: 2
|
||||
|
||||
sources:
|
||||
- name: toronto
|
||||
description: "Toronto data loaded from CMHC and City of Toronto sources"
|
||||
database: portfolio
|
||||
schema: raw_toronto
|
||||
tables:
|
||||
- name: fact_rentals
|
||||
description: "CMHC annual rental survey data by zone and bedroom type"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: date_key
|
||||
description: "Foreign key to dim_time"
|
||||
- name: zone_key
|
||||
description: "Foreign key to dim_cmhc_zone"
|
||||
|
||||
- name: dim_cmhc_zone
|
||||
description: "CMHC zone dimension with geometry"
|
||||
columns:
|
||||
- name: zone_key
|
||||
description: "Primary key"
|
||||
- name: zone_code
|
||||
description: "CMHC zone code"
|
||||
|
||||
- name: dim_neighbourhood
|
||||
description: "City of Toronto neighbourhoods (158 official boundaries)"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Primary key"
|
||||
|
||||
- name: dim_policy_event
|
||||
description: "Housing policy events for annotation"
|
||||
columns:
|
||||
- name: event_id
|
||||
description: "Primary key"
|
||||
|
||||
- name: fact_census
|
||||
description: "Census demographics by neighbourhood and year"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: neighbourhood_id
|
||||
description: "Foreign key to dim_neighbourhood"
|
||||
- name: census_year
|
||||
description: "Census year (2016, 2021, etc.)"
|
||||
- name: population
|
||||
description: "Total population"
|
||||
- name: median_household_income
|
||||
description: "Median household income"
|
||||
|
||||
- name: fact_crime
|
||||
description: "Crime statistics by neighbourhood, year, and type"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: neighbourhood_id
|
||||
description: "Foreign key to dim_neighbourhood"
|
||||
- name: year
|
||||
description: "Statistics year"
|
||||
- name: crime_type
|
||||
description: "Type of crime"
|
||||
- name: count
|
||||
description: "Number of incidents"
|
||||
- name: rate_per_100k
|
||||
description: "Rate per 100,000 population"
|
||||
|
||||
- name: fact_amenities
|
||||
description: "Amenity counts by neighbourhood and type"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: neighbourhood_id
|
||||
description: "Foreign key to dim_neighbourhood"
|
||||
- name: amenity_type
|
||||
description: "Type of amenity (parks, schools, transit)"
|
||||
- name: count
|
||||
description: "Number of amenities"
|
||||
- name: year
|
||||
description: "Reference year"
|
||||
|
||||
- name: bridge_cmhc_neighbourhood
|
||||
description: "CMHC zone to neighbourhood mapping with area weights"
|
||||
columns:
|
||||
- name: id
|
||||
description: "Primary key"
|
||||
- name: cmhc_zone_code
|
||||
description: "CMHC zone code"
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood ID"
|
||||
- name: weight
|
||||
description: "Proportional area weight (0-1)"
|
||||
120
dbt/models/staging/toronto/_staging.yml
Normal file
120
dbt/models/staging/toronto/_staging.yml
Normal file
@@ -0,0 +1,120 @@
|
||||
version: 2
|
||||
|
||||
models:
|
||||
- name: stg_cmhc__rentals
|
||||
description: "Staged CMHC rental market data from fact_rentals"
|
||||
columns:
|
||||
- name: rental_id
|
||||
description: "Unique identifier for rental record"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: date_key
|
||||
description: "Date dimension key (YYYYMMDD)"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: zone_key
|
||||
description: "CMHC zone dimension key"
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_dimensions__cmhc_zones
|
||||
description: "Staged CMHC zone dimension"
|
||||
columns:
|
||||
- name: zone_key
|
||||
description: "Zone dimension key"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: zone_code
|
||||
description: "CMHC zone code"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
|
||||
- name: stg_toronto__neighbourhoods
|
||||
description: "Staged Toronto neighbourhood dimension (158 official boundaries)"
|
||||
columns:
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood primary key"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_name
|
||||
description: "Official neighbourhood name"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: geometry
|
||||
description: "PostGIS geometry (POLYGON)"
|
||||
|
||||
- name: stg_toronto__census
|
||||
description: "Staged census demographics by neighbourhood"
|
||||
columns:
|
||||
- name: census_id
|
||||
description: "Census record identifier"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: census_year
|
||||
description: "Census year (2016, 2021)"
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_toronto__crime
|
||||
description: "Staged crime statistics by neighbourhood"
|
||||
columns:
|
||||
- name: crime_id
|
||||
description: "Crime record identifier"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: crime_type
|
||||
description: "Type of crime"
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_toronto__amenities
|
||||
description: "Staged amenity counts by neighbourhood"
|
||||
columns:
|
||||
- name: amenity_id
|
||||
description: "Amenity record identifier"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: amenity_type
|
||||
description: "Type of amenity"
|
||||
data_tests:
|
||||
- not_null
|
||||
|
||||
- name: stg_cmhc__zone_crosswalk
|
||||
description: "Staged CMHC zone to neighbourhood crosswalk with area weights"
|
||||
columns:
|
||||
- name: crosswalk_id
|
||||
description: "Crosswalk record identifier"
|
||||
data_tests:
|
||||
- unique
|
||||
- not_null
|
||||
- name: cmhc_zone_code
|
||||
description: "CMHC zone code"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: neighbourhood_id
|
||||
description: "Neighbourhood foreign key"
|
||||
data_tests:
|
||||
- not_null
|
||||
- name: area_weight
|
||||
description: "Proportional area weight (0-1)"
|
||||
data_tests:
|
||||
- not_null
|
||||
@@ -1,9 +1,13 @@
|
||||
-- Staged CMHC rental market survey data
|
||||
-- Source: fact_rentals table loaded from CMHC CSV exports
|
||||
-- Source: fact_rentals table loaded from CMHC/StatCan
|
||||
-- Grain: One row per zone per bedroom type per survey year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto_housing', 'fact_rentals') }}
|
||||
select
|
||||
f.*,
|
||||
t.year as survey_year
|
||||
from {{ source('toronto', 'fact_rentals') }} f
|
||||
join {{ source('shared', 'dim_time') }} t on f.date_key = t.date_key
|
||||
),
|
||||
|
||||
staged as (
|
||||
@@ -11,6 +15,7 @@ staged as (
|
||||
id as rental_id,
|
||||
date_key,
|
||||
zone_key,
|
||||
survey_year as year,
|
||||
bedroom_type,
|
||||
universe as rental_universe,
|
||||
avg_rent,
|
||||
18
dbt/models/staging/toronto/stg_cmhc__zone_crosswalk.sql
Normal file
18
dbt/models/staging/toronto/stg_cmhc__zone_crosswalk.sql
Normal file
@@ -0,0 +1,18 @@
|
||||
-- Staged CMHC zone to neighbourhood crosswalk
|
||||
-- Source: bridge_cmhc_neighbourhood table
|
||||
-- Grain: One row per zone-neighbourhood intersection
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'bridge_cmhc_neighbourhood') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
id as crosswalk_id,
|
||||
cmhc_zone_code,
|
||||
neighbourhood_id,
|
||||
weight as area_weight
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
19
dbt/models/staging/toronto/stg_dimensions__cmhc_zones.sql
Normal file
19
dbt/models/staging/toronto/stg_dimensions__cmhc_zones.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Staged CMHC zone dimension
|
||||
-- Source: dim_cmhc_zone table
|
||||
-- Grain: One row per zone
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'dim_cmhc_zone') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
zone_key,
|
||||
zone_code,
|
||||
zone_name
|
||||
-- geometry column excluded: CMHC does not provide zone boundaries
|
||||
-- Spatial analysis uses dim_neighbourhood geometry instead
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
19
dbt/models/staging/toronto/stg_toronto__amenities.sql
Normal file
19
dbt/models/staging/toronto/stg_toronto__amenities.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Staged amenity counts by neighbourhood
|
||||
-- Source: fact_amenities table
|
||||
-- Grain: One row per neighbourhood per amenity type per year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'fact_amenities') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
id as amenity_id,
|
||||
neighbourhood_id,
|
||||
amenity_type,
|
||||
count as amenity_count,
|
||||
year as amenity_year
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
27
dbt/models/staging/toronto/stg_toronto__census.sql
Normal file
27
dbt/models/staging/toronto/stg_toronto__census.sql
Normal file
@@ -0,0 +1,27 @@
|
||||
-- Staged census demographics by neighbourhood
|
||||
-- Source: fact_census table
|
||||
-- Grain: One row per neighbourhood per census year
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'fact_census') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
id as census_id,
|
||||
neighbourhood_id,
|
||||
census_year,
|
||||
population,
|
||||
population_density,
|
||||
median_household_income,
|
||||
average_household_income,
|
||||
unemployment_rate,
|
||||
pct_bachelors_or_higher,
|
||||
pct_owner_occupied,
|
||||
pct_renter_occupied,
|
||||
median_age,
|
||||
average_dwelling_value
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
20
dbt/models/staging/toronto/stg_toronto__crime.sql
Normal file
20
dbt/models/staging/toronto/stg_toronto__crime.sql
Normal file
@@ -0,0 +1,20 @@
|
||||
-- Staged crime statistics by neighbourhood
|
||||
-- Source: fact_crime table
|
||||
-- Grain: One row per neighbourhood per year per crime type
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'fact_crime') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
id as crime_id,
|
||||
neighbourhood_id,
|
||||
year as crime_year,
|
||||
crime_type,
|
||||
count as incident_count,
|
||||
rate_per_100k
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
25
dbt/models/staging/toronto/stg_toronto__neighbourhoods.sql
Normal file
25
dbt/models/staging/toronto/stg_toronto__neighbourhoods.sql
Normal file
@@ -0,0 +1,25 @@
|
||||
-- Staged Toronto neighbourhood dimension
|
||||
-- Source: dim_neighbourhood table
|
||||
-- Grain: One row per neighbourhood (158 total)
|
||||
|
||||
with source as (
|
||||
select * from {{ source('toronto', 'dim_neighbourhood') }}
|
||||
),
|
||||
|
||||
staged as (
|
||||
select
|
||||
neighbourhood_id,
|
||||
name as neighbourhood_name,
|
||||
geometry,
|
||||
population,
|
||||
land_area_sqkm,
|
||||
pop_density_per_sqkm,
|
||||
pct_bachelors_or_higher,
|
||||
median_household_income,
|
||||
pct_owner_occupied,
|
||||
pct_renter_occupied,
|
||||
census_year
|
||||
from source
|
||||
)
|
||||
|
||||
select * from staged
|
||||
11
dbt/package-lock.yml
Normal file
11
dbt/package-lock.yml
Normal file
@@ -0,0 +1,11 @@
|
||||
packages:
|
||||
- name: dbt_utils
|
||||
package: dbt-labs/dbt_utils
|
||||
version: 1.3.3
|
||||
- name: dbt_expectations
|
||||
package: calogica/dbt_expectations
|
||||
version: 0.10.4
|
||||
- name: dbt_date
|
||||
package: calogica/dbt_date
|
||||
version: 0.10.1
|
||||
sha1_hash: 51a51ab489f7b302c8745ae3c3781271816b01be
|
||||
@@ -1,4 +1,4 @@
|
||||
toronto_housing:
|
||||
portfolio:
|
||||
target: dev
|
||||
outputs:
|
||||
dev:
|
||||
@@ -1,6 +1,6 @@
|
||||
services:
|
||||
db:
|
||||
image: postgis/postgis:16-3.4
|
||||
image: ${POSTGIS_IMAGE:-postgis/postgis:16-3.4}
|
||||
container_name: portfolio-db
|
||||
restart: unless-stopped
|
||||
ports:
|
||||
|
||||
500
docs/CONTRIBUTING.md
Normal file
500
docs/CONTRIBUTING.md
Normal file
@@ -0,0 +1,500 @@
|
||||
# Developer Guide
|
||||
|
||||
Instructions for contributing to the Analytics Portfolio project.
|
||||
|
||||
---
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Development Setup](#development-setup)
|
||||
2. [Adding a Blog Post](#adding-a-blog-post)
|
||||
3. [Adding a New Page](#adding-a-new-page)
|
||||
4. [Adding a Dashboard Tab](#adding-a-dashboard-tab)
|
||||
5. [Creating Figure Factories](#creating-figure-factories)
|
||||
6. [Branch Workflow](#branch-workflow)
|
||||
7. [Code Standards](#code-standards)
|
||||
|
||||
---
|
||||
|
||||
## Development Setup
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Python 3.11+ (via pyenv)
|
||||
- Docker and Docker Compose
|
||||
- Git
|
||||
|
||||
### Initial Setup
|
||||
|
||||
```bash
|
||||
# Clone repository
|
||||
git clone https://gitea.hotserv.cloud/lmiranda/personal-portfolio.git
|
||||
cd personal-portfolio
|
||||
|
||||
# Run setup (creates venv, installs deps, copies .env.example)
|
||||
make setup
|
||||
|
||||
# Start PostgreSQL + PostGIS
|
||||
make docker-up
|
||||
|
||||
# Initialize database
|
||||
make db-init
|
||||
|
||||
# Start development server
|
||||
make run
|
||||
```
|
||||
|
||||
The app runs at `http://localhost:8050`.
|
||||
|
||||
### Useful Commands
|
||||
|
||||
```bash
|
||||
make test # Run tests
|
||||
make test-cov # Run tests with coverage
|
||||
make lint # Check code style
|
||||
make format # Auto-format code
|
||||
make typecheck # Run mypy type checker
|
||||
make ci # Run all checks (lint, typecheck, test)
|
||||
make dbt-run # Run dbt transformations
|
||||
make dbt-test # Run dbt tests
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Adding a Blog Post
|
||||
|
||||
Blog posts are Markdown files with YAML frontmatter, stored in `portfolio_app/content/blog/`.
|
||||
|
||||
### Step 1: Create the Markdown File
|
||||
|
||||
Create a new file in `portfolio_app/content/blog/`:
|
||||
|
||||
```bash
|
||||
touch portfolio_app/content/blog/your-article-slug.md
|
||||
```
|
||||
|
||||
The filename becomes the URL slug: `/blog/your-article-slug`
|
||||
|
||||
### Step 2: Add Frontmatter
|
||||
|
||||
Every blog post requires YAML frontmatter at the top:
|
||||
|
||||
```markdown
|
||||
---
|
||||
title: "Your Article Title"
|
||||
date: "2026-01-17"
|
||||
description: "A brief description for the article card (1-2 sentences)"
|
||||
tags:
|
||||
- data-engineering
|
||||
- python
|
||||
- lessons-learned
|
||||
status: published
|
||||
---
|
||||
|
||||
Your article content starts here...
|
||||
```
|
||||
|
||||
**Required fields:**
|
||||
|
||||
| Field | Description |
|
||||
|-------|-------------|
|
||||
| `title` | Article title (displayed on cards and page) |
|
||||
| `date` | Publication date in `YYYY-MM-DD` format |
|
||||
| `description` | Short summary for article listing cards |
|
||||
| `tags` | List of tags (displayed as badges) |
|
||||
| `status` | `published` or `draft` (drafts are hidden from listing) |
|
||||
|
||||
### Step 3: Write Content
|
||||
|
||||
Use standard Markdown:
|
||||
|
||||
```markdown
|
||||
## Section Heading
|
||||
|
||||
Regular paragraph text.
|
||||
|
||||
### Subsection
|
||||
|
||||
- Bullet points
|
||||
- Another point
|
||||
|
||||
```python
|
||||
# Code blocks with syntax highlighting
|
||||
def example():
|
||||
return "Hello"
|
||||
```
|
||||
|
||||
**Bold text** and *italic text*.
|
||||
|
||||
> Blockquotes for callouts
|
||||
```
|
||||
|
||||
### Step 4: Test Locally
|
||||
|
||||
```bash
|
||||
make run
|
||||
```
|
||||
|
||||
Visit `http://localhost:8050/blog` to see the article listing.
|
||||
Visit `http://localhost:8050/blog/your-article-slug` for the full article.
|
||||
|
||||
### Example: Complete Blog Post
|
||||
|
||||
```markdown
|
||||
---
|
||||
title: "Building ETL Pipelines with Python"
|
||||
date: "2026-01-17"
|
||||
description: "Lessons from building production data pipelines at scale"
|
||||
tags:
|
||||
- python
|
||||
- etl
|
||||
- data-engineering
|
||||
status: published
|
||||
---
|
||||
|
||||
When I started building data pipelines, I made every mistake possible...
|
||||
|
||||
## The Problem
|
||||
|
||||
Most tutorials show toy examples. Real pipelines are different.
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
def safe_transform(df: pd.DataFrame) -> pd.DataFrame:
|
||||
try:
|
||||
return df.apply(transform_row, axis=1)
|
||||
except ValueError as e:
|
||||
logger.error(f"Transform failed: {e}")
|
||||
raise
|
||||
```
|
||||
|
||||
## Conclusion
|
||||
|
||||
Ship something that works, then iterate.
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Adding a New Page
|
||||
|
||||
Pages use Dash's automatic routing based on file location in `portfolio_app/pages/`.
|
||||
|
||||
### Step 1: Create the Page File
|
||||
|
||||
```bash
|
||||
touch portfolio_app/pages/your_page.py
|
||||
```
|
||||
|
||||
### Step 2: Register the Page
|
||||
|
||||
Every page must call `dash.register_page()`:
|
||||
|
||||
```python
|
||||
"""Your page description."""
|
||||
|
||||
import dash
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
dash.register_page(
|
||||
__name__,
|
||||
path="/your-page", # URL path
|
||||
name="Your Page", # Display name (for nav)
|
||||
title="Your Page Title" # Browser tab title
|
||||
)
|
||||
|
||||
|
||||
def layout() -> dmc.Container:
|
||||
"""Page layout function."""
|
||||
return dmc.Container(
|
||||
dmc.Stack(
|
||||
[
|
||||
dmc.Title("Your Page", order=1),
|
||||
dmc.Text("Page content here."),
|
||||
],
|
||||
gap="lg",
|
||||
),
|
||||
size="md",
|
||||
py="xl",
|
||||
)
|
||||
```
|
||||
|
||||
### Step 3: Page with Dynamic Content
|
||||
|
||||
For pages with URL parameters:
|
||||
|
||||
```python
|
||||
# pages/blog/article.py
|
||||
dash.register_page(
|
||||
__name__,
|
||||
path_template="/blog/<slug>", # Dynamic parameter
|
||||
name="Article",
|
||||
)
|
||||
|
||||
|
||||
def layout(slug: str = "") -> dmc.Container:
|
||||
"""Layout receives URL parameters as arguments."""
|
||||
article = get_article(slug)
|
||||
if not article:
|
||||
return dmc.Text("Article not found")
|
||||
|
||||
return dmc.Container(
|
||||
dmc.Title(article["meta"]["title"]),
|
||||
# ...
|
||||
)
|
||||
```
|
||||
|
||||
### Step 4: Add Navigation (Optional)
|
||||
|
||||
To add the page to the sidebar, edit `portfolio_app/components/sidebar.py`:
|
||||
|
||||
```python
|
||||
# For main pages (Home, About, Blog, etc.)
|
||||
NAV_ITEMS_MAIN = [
|
||||
{"path": "/", "icon": "tabler:home", "label": "Home"},
|
||||
{"path": "/your-page", "icon": "tabler:star", "label": "Your Page"},
|
||||
# ...
|
||||
]
|
||||
|
||||
# For project/dashboard pages
|
||||
NAV_ITEMS_PROJECTS = [
|
||||
{"path": "/projects", "icon": "tabler:folder", "label": "Projects"},
|
||||
{"path": "/your-dashboard", "icon": "tabler:chart-bar", "label": "Your Dashboard"},
|
||||
# ...
|
||||
]
|
||||
```
|
||||
|
||||
The sidebar uses icon buttons with tooltips. Each item needs `path`, `icon` (Tabler icon name), and `label` (tooltip text).
|
||||
|
||||
### URL Routing Summary
|
||||
|
||||
| File Location | URL |
|
||||
|---------------|-----|
|
||||
| `pages/home.py` | `/` (if `path="/"`) |
|
||||
| `pages/about.py` | `/about` |
|
||||
| `pages/blog/index.py` | `/blog` |
|
||||
| `pages/blog/article.py` | `/blog/<slug>` |
|
||||
| `pages/toronto/dashboard.py` | `/toronto` |
|
||||
|
||||
---
|
||||
|
||||
## Adding a Dashboard Tab
|
||||
|
||||
Dashboard tabs are in `portfolio_app/pages/toronto/tabs/`.
|
||||
|
||||
### Step 1: Create Tab Layout
|
||||
|
||||
```python
|
||||
# pages/toronto/tabs/your_tab.py
|
||||
"""Your tab description."""
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
from portfolio_app.figures.toronto.choropleth import create_choropleth
|
||||
from portfolio_app.toronto.demo_data import get_demo_data
|
||||
|
||||
|
||||
def create_your_tab_layout() -> dmc.Stack:
|
||||
"""Create the tab layout."""
|
||||
data = get_demo_data()
|
||||
|
||||
return dmc.Stack(
|
||||
[
|
||||
dmc.Grid(
|
||||
[
|
||||
dmc.GridCol(
|
||||
# Map on left
|
||||
create_choropleth(data, "your_metric"),
|
||||
span=8,
|
||||
),
|
||||
dmc.GridCol(
|
||||
# KPI cards on right
|
||||
create_kpi_cards(data),
|
||||
span=4,
|
||||
),
|
||||
],
|
||||
),
|
||||
# Charts below
|
||||
create_supporting_charts(data),
|
||||
],
|
||||
gap="lg",
|
||||
)
|
||||
```
|
||||
|
||||
### Step 2: Register in Dashboard
|
||||
|
||||
Edit `pages/toronto/dashboard.py` to add the tab:
|
||||
|
||||
```python
|
||||
from portfolio_app.pages.toronto.tabs.your_tab import create_your_tab_layout
|
||||
|
||||
# In the tabs list:
|
||||
dmc.TabsTab("Your Tab", value="your-tab"),
|
||||
|
||||
# In the panels:
|
||||
dmc.TabsPanel(create_your_tab_layout(), value="your-tab"),
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Creating Figure Factories
|
||||
|
||||
Figure factories are organized by dashboard domain under `portfolio_app/figures/{domain}/`.
|
||||
|
||||
### Pattern
|
||||
|
||||
```python
|
||||
# figures/toronto/your_chart.py
|
||||
"""Your chart type factory for Toronto dashboard."""
|
||||
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def create_your_chart(
|
||||
df: pd.DataFrame,
|
||||
x_col: str,
|
||||
y_col: str,
|
||||
title: str = "",
|
||||
) -> go.Figure:
|
||||
"""Create a your_chart figure.
|
||||
|
||||
Args:
|
||||
df: DataFrame with data.
|
||||
x_col: Column for x-axis.
|
||||
y_col: Column for y-axis.
|
||||
title: Optional chart title.
|
||||
|
||||
Returns:
|
||||
Configured Plotly figure.
|
||||
"""
|
||||
fig = px.bar(df, x=x_col, y=y_col, title=title)
|
||||
|
||||
fig.update_layout(
|
||||
template="plotly_white",
|
||||
margin=dict(l=40, r=40, t=40, b=40),
|
||||
)
|
||||
|
||||
return fig
|
||||
```
|
||||
|
||||
### Export from `__init__.py`
|
||||
|
||||
```python
|
||||
# figures/toronto/__init__.py
|
||||
from .your_chart import create_your_chart
|
||||
|
||||
__all__ = [
|
||||
"create_your_chart",
|
||||
# ...
|
||||
]
|
||||
```
|
||||
|
||||
### Importing Figure Factories
|
||||
|
||||
```python
|
||||
# In callbacks or tabs
|
||||
from portfolio_app.figures.toronto import create_choropleth_figure
|
||||
from portfolio_app.figures.toronto.bar_charts import create_ranking_bar
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Branch Workflow
|
||||
|
||||
```
|
||||
main (production)
|
||||
↑
|
||||
staging (pre-production)
|
||||
↑
|
||||
development (integration)
|
||||
↑
|
||||
feature/XX-description (your work)
|
||||
```
|
||||
|
||||
### Creating a Feature Branch
|
||||
|
||||
```bash
|
||||
# Start from development
|
||||
git checkout development
|
||||
git pull origin development
|
||||
|
||||
# Create feature branch
|
||||
git checkout -b feature/10-add-new-page
|
||||
|
||||
# Work, commit, push
|
||||
git add .
|
||||
git commit -m "feat: Add new page"
|
||||
git push -u origin feature/10-add-new-page
|
||||
```
|
||||
|
||||
### Merging
|
||||
|
||||
```bash
|
||||
# Merge into development
|
||||
git checkout development
|
||||
git merge feature/10-add-new-page
|
||||
git push origin development
|
||||
|
||||
# Delete feature branch
|
||||
git branch -d feature/10-add-new-page
|
||||
git push origin --delete feature/10-add-new-page
|
||||
```
|
||||
|
||||
**Rules:**
|
||||
- Never commit directly to `main` or `staging`
|
||||
- Never delete `development`
|
||||
- Feature branches are temporary
|
||||
|
||||
---
|
||||
|
||||
## Code Standards
|
||||
|
||||
### Type Hints
|
||||
|
||||
Use Python 3.10+ style:
|
||||
|
||||
```python
|
||||
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
|
||||
...
|
||||
```
|
||||
|
||||
### Imports
|
||||
|
||||
| Context | Style |
|
||||
|---------|-------|
|
||||
| Same directory | `from .module import X` |
|
||||
| Sibling directory | `from ..schemas.model import Y` |
|
||||
| External packages | `import pandas as pd` |
|
||||
|
||||
### Formatting
|
||||
|
||||
```bash
|
||||
make format # Runs ruff formatter
|
||||
make lint # Checks style
|
||||
```
|
||||
|
||||
### Docstrings
|
||||
|
||||
Google style, only for non-obvious functions:
|
||||
|
||||
```python
|
||||
def calculate_score(values: list[float], weights: list[float]) -> float:
|
||||
"""Calculate weighted score.
|
||||
|
||||
Args:
|
||||
values: Raw metric values.
|
||||
weights: Weight for each metric.
|
||||
|
||||
Returns:
|
||||
Weighted average score.
|
||||
"""
|
||||
...
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Questions?
|
||||
|
||||
Check `CLAUDE.md` for AI assistant context and architectural decisions.
|
||||
335
docs/DATABASE_SCHEMA.md
Normal file
335
docs/DATABASE_SCHEMA.md
Normal file
@@ -0,0 +1,335 @@
|
||||
# Database Schema
|
||||
|
||||
This document describes the PostgreSQL/PostGIS database schema for the Toronto Neighbourhood Dashboard.
|
||||
|
||||
## Entity Relationship Diagram
|
||||
|
||||
```mermaid
|
||||
erDiagram
|
||||
dim_time {
|
||||
int date_key PK
|
||||
date full_date UK
|
||||
int year
|
||||
int month
|
||||
int quarter
|
||||
string month_name
|
||||
bool is_month_start
|
||||
}
|
||||
|
||||
dim_cmhc_zone {
|
||||
int zone_key PK
|
||||
string zone_code UK
|
||||
string zone_name
|
||||
geometry geometry
|
||||
}
|
||||
|
||||
dim_neighbourhood {
|
||||
int neighbourhood_id PK
|
||||
string name
|
||||
geometry geometry
|
||||
int population
|
||||
numeric land_area_sqkm
|
||||
numeric pop_density_per_sqkm
|
||||
numeric pct_bachelors_or_higher
|
||||
numeric median_household_income
|
||||
numeric pct_owner_occupied
|
||||
numeric pct_renter_occupied
|
||||
int census_year
|
||||
}
|
||||
|
||||
dim_policy_event {
|
||||
int event_id PK
|
||||
date event_date
|
||||
date effective_date
|
||||
string level
|
||||
string category
|
||||
string title
|
||||
text description
|
||||
string expected_direction
|
||||
string source_url
|
||||
string confidence
|
||||
}
|
||||
|
||||
fact_rentals {
|
||||
int id PK
|
||||
int date_key FK
|
||||
int zone_key FK
|
||||
string bedroom_type
|
||||
int universe
|
||||
numeric avg_rent
|
||||
numeric median_rent
|
||||
numeric vacancy_rate
|
||||
numeric availability_rate
|
||||
numeric turnover_rate
|
||||
numeric rent_change_pct
|
||||
string reliability_code
|
||||
}
|
||||
|
||||
fact_census {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
int census_year
|
||||
int population
|
||||
numeric population_density
|
||||
numeric median_household_income
|
||||
numeric average_household_income
|
||||
numeric unemployment_rate
|
||||
numeric pct_bachelors_or_higher
|
||||
numeric pct_owner_occupied
|
||||
numeric pct_renter_occupied
|
||||
numeric median_age
|
||||
numeric average_dwelling_value
|
||||
}
|
||||
|
||||
fact_crime {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
int year
|
||||
string crime_type
|
||||
int count
|
||||
numeric rate_per_100k
|
||||
}
|
||||
|
||||
fact_amenities {
|
||||
int id PK
|
||||
int neighbourhood_id FK
|
||||
string amenity_type
|
||||
int count
|
||||
int year
|
||||
}
|
||||
|
||||
bridge_cmhc_neighbourhood {
|
||||
int id PK
|
||||
string cmhc_zone_code FK
|
||||
int neighbourhood_id FK
|
||||
numeric weight
|
||||
}
|
||||
|
||||
dim_time ||--o{ fact_rentals : "date_key"
|
||||
dim_cmhc_zone ||--o{ fact_rentals : "zone_key"
|
||||
dim_neighbourhood ||--o{ fact_census : "neighbourhood_id"
|
||||
dim_neighbourhood ||--o{ fact_crime : "neighbourhood_id"
|
||||
dim_neighbourhood ||--o{ fact_amenities : "neighbourhood_id"
|
||||
dim_cmhc_zone ||--o{ bridge_cmhc_neighbourhood : "zone_code"
|
||||
dim_neighbourhood ||--o{ bridge_cmhc_neighbourhood : "neighbourhood_id"
|
||||
```
|
||||
|
||||
## Schema Layers
|
||||
|
||||
### Database Schemas
|
||||
|
||||
| Schema | Purpose | Managed By |
|
||||
|--------|---------|------------|
|
||||
| `public` | Shared dimensions (dim_time) | SQLAlchemy |
|
||||
| `raw_toronto` | Toronto dimension and fact tables | SQLAlchemy |
|
||||
| `stg_toronto` | Toronto staging models | dbt |
|
||||
| `int_toronto` | Toronto intermediate models | dbt |
|
||||
| `mart_toronto` | Toronto analytical tables | dbt |
|
||||
|
||||
### Raw Toronto Schema (raw_toronto)
|
||||
|
||||
Toronto-specific tables loaded by SQLAlchemy:
|
||||
|
||||
| Table | Source | Description |
|
||||
|-------|--------|-------------|
|
||||
| `dim_neighbourhood` | City of Toronto API | 158 neighbourhood boundaries |
|
||||
| `dim_cmhc_zone` | CMHC | ~20 rental market zones |
|
||||
| `dim_policy_event` | Manual | Policy events for annotation |
|
||||
| `fact_census` | City of Toronto API | Census profile data |
|
||||
| `fact_crime` | Toronto Police API | Crime statistics |
|
||||
| `fact_amenities` | City of Toronto API | Amenity counts |
|
||||
| `fact_rentals` | CMHC Data Files | Rental market survey data |
|
||||
| `bridge_cmhc_neighbourhood` | Computed | Zone-neighbourhood mapping |
|
||||
|
||||
### Public Schema
|
||||
|
||||
Shared dimensions used across all projects:
|
||||
|
||||
| Table | Description |
|
||||
|-------|-------------|
|
||||
| `dim_time` | Time dimension (monthly grain) |
|
||||
|
||||
### Staging Schema - stg_toronto (dbt)
|
||||
|
||||
Staging models provide 1:1 cleaned representations of source data:
|
||||
|
||||
| Model | Source Table | Purpose |
|
||||
|-------|-------------|---------|
|
||||
| `stg_toronto__neighbourhoods` | raw.neighbourhoods | Cleaned boundaries with standardized names |
|
||||
| `stg_toronto__census` | raw.census_profiles | Typed census metrics |
|
||||
| `stg_cmhc__rentals` | raw.cmhc_rentals | Validated rental data |
|
||||
| `stg_toronto__crime` | raw.crime_data | Standardized crime categories |
|
||||
| `stg_toronto__amenities` | raw.amenities | Typed amenity counts |
|
||||
| `stg_dimensions__time` | generated | Time dimension |
|
||||
| `stg_dimensions__cmhc_zones` | raw.cmhc_zones | CMHC zone boundaries |
|
||||
| `stg_cmhc__zone_crosswalk` | raw.crosswalk | Zone-neighbourhood mapping |
|
||||
|
||||
### Marts Schema - mart_toronto (dbt)
|
||||
|
||||
Analytical tables ready for dashboard consumption:
|
||||
|
||||
| Model | Grain | Purpose |
|
||||
|-------|-------|---------|
|
||||
| `mart_neighbourhood_overview` | neighbourhood | Composite livability scores |
|
||||
| `mart_neighbourhood_housing` | neighbourhood | Housing and rent metrics |
|
||||
| `mart_neighbourhood_safety` | neighbourhood × year | Crime rate calculations |
|
||||
| `mart_neighbourhood_demographics` | neighbourhood | Income, age, population metrics |
|
||||
| `mart_neighbourhood_amenities` | neighbourhood | Amenity accessibility scores |
|
||||
| `mart_toronto_rentals` | zone × month | Time-series rental analysis |
|
||||
|
||||
## Table Details
|
||||
|
||||
### Dimension Tables
|
||||
|
||||
#### dim_time
|
||||
Time dimension for date-based analysis. Grain: one row per month.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| date_key | INTEGER | PK | Surrogate key (YYYYMM format) |
|
||||
| full_date | DATE | UNIQUE, NOT NULL | First day of month |
|
||||
| year | INTEGER | NOT NULL | Calendar year |
|
||||
| month | INTEGER | NOT NULL | Month number (1-12) |
|
||||
| quarter | INTEGER | NOT NULL | Quarter (1-4) |
|
||||
| month_name | VARCHAR(20) | NOT NULL | Month name |
|
||||
| is_month_start | BOOLEAN | DEFAULT TRUE | Always true (monthly grain) |
|
||||
|
||||
#### dim_cmhc_zone
|
||||
CMHC rental market zones (~20 zones covering Toronto).
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| zone_key | INTEGER | PK, AUTO | Surrogate key |
|
||||
| zone_code | VARCHAR(10) | UNIQUE, NOT NULL | CMHC zone identifier |
|
||||
| zone_name | VARCHAR(100) | NOT NULL | Zone display name |
|
||||
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS zone boundary |
|
||||
|
||||
#### dim_neighbourhood
|
||||
Toronto's 158 official neighbourhoods.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| neighbourhood_id | INTEGER | PK | City-assigned ID |
|
||||
| name | VARCHAR(100) | NOT NULL | Neighbourhood name |
|
||||
| geometry | GEOMETRY(POLYGON) | SRID 4326 | PostGIS boundary |
|
||||
| population | INTEGER | | Total population |
|
||||
| land_area_sqkm | NUMERIC(10,4) | | Area in km² |
|
||||
| pop_density_per_sqkm | NUMERIC(10,2) | | Population density |
|
||||
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
|
||||
| median_household_income | NUMERIC(12,2) | | Median income |
|
||||
| pct_owner_occupied | NUMERIC(5,2) | | Owner occupancy rate |
|
||||
| pct_renter_occupied | NUMERIC(5,2) | | Renter occupancy rate |
|
||||
| census_year | INTEGER | DEFAULT 2021 | Census reference year |
|
||||
|
||||
#### dim_policy_event
|
||||
Policy events for time-series annotation (rent control, interest rates, etc.).
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| event_id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| event_date | DATE | NOT NULL | Announcement date |
|
||||
| effective_date | DATE | | Implementation date |
|
||||
| level | VARCHAR(20) | NOT NULL | federal/provincial/municipal |
|
||||
| category | VARCHAR(20) | NOT NULL | monetary/tax/regulatory/supply/economic |
|
||||
| title | VARCHAR(200) | NOT NULL | Event title |
|
||||
| description | TEXT | | Detailed description |
|
||||
| expected_direction | VARCHAR(10) | NOT NULL | bearish/bullish/neutral |
|
||||
| source_url | VARCHAR(500) | | Reference link |
|
||||
| confidence | VARCHAR(10) | DEFAULT 'medium' | high/medium/low |
|
||||
|
||||
### Fact Tables
|
||||
|
||||
#### fact_rentals
|
||||
CMHC rental market survey data. Grain: zone × bedroom type × survey date.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| date_key | INTEGER | FK → dim_time | Survey date reference |
|
||||
| zone_key | INTEGER | FK → dim_cmhc_zone | CMHC zone reference |
|
||||
| bedroom_type | VARCHAR(20) | NOT NULL | bachelor/1-bed/2-bed/3+bed/total |
|
||||
| universe | INTEGER | | Total rental units |
|
||||
| avg_rent | NUMERIC(10,2) | | Average rent |
|
||||
| median_rent | NUMERIC(10,2) | | Median rent |
|
||||
| vacancy_rate | NUMERIC(5,2) | | Vacancy percentage |
|
||||
| availability_rate | NUMERIC(5,2) | | Availability percentage |
|
||||
| turnover_rate | NUMERIC(5,2) | | Turnover percentage |
|
||||
| rent_change_pct | NUMERIC(5,2) | | Year-over-year change |
|
||||
| reliability_code | VARCHAR(2) | | CMHC data quality code |
|
||||
|
||||
#### fact_census
|
||||
Census statistics. Grain: neighbourhood × census year.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| census_year | INTEGER | NOT NULL | 2016, 2021, etc. |
|
||||
| population | INTEGER | | Total population |
|
||||
| population_density | NUMERIC(10,2) | | People per km² |
|
||||
| median_household_income | NUMERIC(12,2) | | Median income |
|
||||
| average_household_income | NUMERIC(12,2) | | Average income |
|
||||
| unemployment_rate | NUMERIC(5,2) | | Unemployment % |
|
||||
| pct_bachelors_or_higher | NUMERIC(5,2) | | Education rate |
|
||||
| pct_owner_occupied | NUMERIC(5,2) | | Owner rate |
|
||||
| pct_renter_occupied | NUMERIC(5,2) | | Renter rate |
|
||||
| median_age | NUMERIC(5,2) | | Median resident age |
|
||||
| average_dwelling_value | NUMERIC(12,2) | | Average home value |
|
||||
|
||||
#### fact_crime
|
||||
Crime statistics. Grain: neighbourhood × year × crime type.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| year | INTEGER | NOT NULL | Calendar year |
|
||||
| crime_type | VARCHAR(50) | NOT NULL | Crime category |
|
||||
| count | INTEGER | NOT NULL | Number of incidents |
|
||||
| rate_per_100k | NUMERIC(10,2) | | Rate per 100k population |
|
||||
|
||||
#### fact_amenities
|
||||
Amenity counts. Grain: neighbourhood × amenity type × year.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| amenity_type | VARCHAR(50) | NOT NULL | parks/schools/transit/etc. |
|
||||
| count | INTEGER | NOT NULL | Number of amenities |
|
||||
| year | INTEGER | NOT NULL | Reference year |
|
||||
|
||||
### Bridge Tables
|
||||
|
||||
#### bridge_cmhc_neighbourhood
|
||||
Maps CMHC zones to neighbourhoods with area-based weights for data disaggregation.
|
||||
|
||||
| Column | Type | Constraints | Description |
|
||||
|--------|------|-------------|-------------|
|
||||
| id | INTEGER | PK, AUTO | Surrogate key |
|
||||
| cmhc_zone_code | VARCHAR(10) | FK → dim_cmhc_zone | Zone reference |
|
||||
| neighbourhood_id | INTEGER | FK → dim_neighbourhood | Neighbourhood reference |
|
||||
| weight | NUMERIC(5,4) | NOT NULL | Proportional weight (0-1) |
|
||||
|
||||
## Indexes
|
||||
|
||||
| Table | Index | Columns | Purpose |
|
||||
|-------|-------|---------|---------|
|
||||
| fact_rentals | ix_fact_rentals_date_zone | date_key, zone_key | Time-series queries |
|
||||
| fact_census | ix_fact_census_neighbourhood_year | neighbourhood_id, census_year | Census lookups |
|
||||
| fact_crime | ix_fact_crime_neighbourhood_year | neighbourhood_id, year | Crime trends |
|
||||
| fact_crime | ix_fact_crime_type | crime_type | Crime filtering |
|
||||
| fact_amenities | ix_fact_amenities_neighbourhood_year | neighbourhood_id, year | Amenity queries |
|
||||
| fact_amenities | ix_fact_amenities_type | amenity_type | Amenity filtering |
|
||||
| bridge_cmhc_neighbourhood | ix_bridge_cmhc_zone | cmhc_zone_code | Zone lookups |
|
||||
| bridge_cmhc_neighbourhood | ix_bridge_neighbourhood | neighbourhood_id | Neighbourhood lookups |
|
||||
|
||||
## PostGIS Extensions
|
||||
|
||||
The database requires PostGIS for geospatial operations:
|
||||
|
||||
```sql
|
||||
CREATE EXTENSION IF NOT EXISTS postgis;
|
||||
```
|
||||
|
||||
All geometry columns use SRID 4326 (WGS84) for compatibility with web mapping libraries.
|
||||
@@ -1,21 +1,193 @@
|
||||
# Portfolio Project Reference
|
||||
|
||||
**Project**: Analytics Portfolio
|
||||
**Owner**: Leo
|
||||
**Status**: Ready for Sprint 1
|
||||
**Owner**: Leo Miranda
|
||||
**Status**: Sprint 9 Complete (Dashboard Implementation Done)
|
||||
**Last Updated**: January 2026
|
||||
|
||||
---
|
||||
|
||||
## Project Overview
|
||||
|
||||
Two-project analytics portfolio demonstrating end-to-end data engineering, visualization, and ML capabilities.
|
||||
Personal portfolio website with an interactive Toronto Neighbourhood Dashboard demonstrating data engineering, visualization, and analytics capabilities.
|
||||
|
||||
| Project | Domain | Key Skills | Phase |
|
||||
|---------|--------|------------|-------|
|
||||
| **Toronto Housing Dashboard** | Real estate | ETL, dimensional modeling, geospatial, choropleth | Phase 1 (Active) |
|
||||
| **Energy Pricing Analysis** | Utility markets | Time series, ML prediction, API integration | Phase 3 (Future) |
|
||||
| Component | Description | Status |
|
||||
|-----------|-------------|--------|
|
||||
| Portfolio Website | Bio, About, Projects, Resume, Contact, Blog | Complete |
|
||||
| Toronto Dashboard | 5-tab neighbourhood analysis | Complete |
|
||||
| Data Pipeline | dbt models, figure factories | Complete |
|
||||
| Deployment | Production deployment | Pending |
|
||||
|
||||
**Platform**: Monolithic Dash application on self-hosted VPS (bio landing page + dashboards).
|
||||
---
|
||||
|
||||
## Completed Work
|
||||
|
||||
### Sprint 1-6: Foundation
|
||||
- Repository setup, Docker, PostgreSQL + PostGIS
|
||||
- Bio landing page implementation
|
||||
- Initial data model design
|
||||
|
||||
### Sprint 7: Navigation & Theme
|
||||
- Sidebar navigation
|
||||
- Dark/light theme toggle
|
||||
- dash-mantine-components integration
|
||||
|
||||
### Sprint 8: Portfolio Website
|
||||
- About, Contact, Projects, Resume pages
|
||||
- Blog system with Markdown/frontmatter
|
||||
- Health endpoint
|
||||
|
||||
### Sprint 9: Neighbourhood Dashboard Transition
|
||||
- Phase 1: Deleted legacy TRREB code
|
||||
- Phase 2: Documentation cleanup
|
||||
- Phase 3: New neighbourhood-centric data model
|
||||
- Phase 4: dbt model restructuring
|
||||
- Phase 5: 5-tab dashboard implementation
|
||||
- Phase 6: 15 documentation notebooks
|
||||
- Phase 7: Final documentation review
|
||||
|
||||
---
|
||||
|
||||
## Application Architecture
|
||||
|
||||
### URL Routes
|
||||
|
||||
| URL | Page | File |
|
||||
|-----|------|------|
|
||||
| `/` | Home | `pages/home.py` |
|
||||
| `/about` | About | `pages/about.py` |
|
||||
| `/contact` | Contact | `pages/contact.py` |
|
||||
| `/projects` | Projects | `pages/projects.py` |
|
||||
| `/resume` | Resume | `pages/resume.py` |
|
||||
| `/blog` | Blog listing | `pages/blog/index.py` |
|
||||
| `/blog/{slug}` | Article | `pages/blog/article.py` |
|
||||
| `/toronto` | Dashboard | `pages/toronto/dashboard.py` |
|
||||
| `/toronto/methodology` | Methodology | `pages/toronto/methodology.py` |
|
||||
| `/health` | Health check | `pages/health.py` |
|
||||
|
||||
### Directory Structure
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
├── app.py # Dash app factory
|
||||
├── config.py # Pydantic BaseSettings
|
||||
├── assets/ # CSS, images
|
||||
├── callbacks/ # Global callbacks (sidebar, theme)
|
||||
├── components/ # Shared UI components
|
||||
├── content/blog/ # Markdown blog articles
|
||||
├── errors/ # Exception handling
|
||||
├── figures/
|
||||
│ └── toronto/ # Toronto figure factories
|
||||
├── pages/
|
||||
│ ├── home.py
|
||||
│ ├── about.py
|
||||
│ ├── contact.py
|
||||
│ ├── projects.py
|
||||
│ ├── resume.py
|
||||
│ ├── health.py
|
||||
│ ├── blog/
|
||||
│ │ ├── index.py
|
||||
│ │ └── article.py
|
||||
│ └── toronto/
|
||||
│ ├── dashboard.py
|
||||
│ ├── methodology.py
|
||||
│ ├── tabs/ # 5 tab layouts
|
||||
│ └── callbacks/ # Dashboard interactions (map_callbacks, chart_callbacks, selection_callbacks)
|
||||
├── toronto/ # Data logic
|
||||
│ ├── parsers/ # API extraction (geo, toronto_open_data, toronto_police, cmhc)
|
||||
│ ├── loaders/ # Database operations (base, cmhc, cmhc_crosswalk)
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ ├── models/ # SQLAlchemy ORM (raw_toronto schema)
|
||||
│ ├── services/ # Query functions (neighbourhood_service, geometry_service)
|
||||
│ └── demo_data.py # Sample data
|
||||
└── utils/
|
||||
└── markdown_loader.py # Blog article loading
|
||||
|
||||
dbt/ # dbt project: portfolio
|
||||
├── models/
|
||||
│ ├── shared/ # Cross-domain dimensions
|
||||
│ ├── staging/toronto/ # Toronto staging models
|
||||
│ ├── intermediate/toronto/ # Toronto intermediate models
|
||||
│ └── marts/toronto/ # Toronto mart tables
|
||||
|
||||
notebooks/
|
||||
└── toronto/ # Toronto documentation notebooks
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Toronto Dashboard
|
||||
|
||||
### Data Sources
|
||||
|
||||
| Source | Data | Format |
|
||||
|--------|------|--------|
|
||||
| City of Toronto Open Data | Neighbourhoods (158), Census profiles, Parks, Schools, Childcare, TTC | GeoJSON, CSV, API |
|
||||
| Toronto Police Service | Crime rates, MCI, Shootings | CSV, API |
|
||||
| CMHC | Rental Market Survey | CSV |
|
||||
|
||||
### Geographic Model
|
||||
|
||||
```
|
||||
City of Toronto Neighbourhoods (158) ← Primary analysis unit
|
||||
CMHC Zones (~20) ← Rental data (Census Tract aligned)
|
||||
```
|
||||
|
||||
### Dashboard Tabs
|
||||
|
||||
| Tab | Choropleth Metric | Supporting Charts |
|
||||
|-----|-------------------|-------------------|
|
||||
| Overview | Livability score | Top/Bottom 10 bar, Income vs Safety scatter |
|
||||
| Housing | Affordability index | Rent trend line, Tenure breakdown bar |
|
||||
| Safety | Crime rate per 100K | Crime breakdown bar, Crime trend line |
|
||||
| Demographics | Median income | Age distribution, Population density bar |
|
||||
| Amenities | Amenity index | Amenity radar, Transit accessibility bar |
|
||||
|
||||
### Star Schema
|
||||
|
||||
| Table | Type | Description |
|
||||
|-------|------|-------------|
|
||||
| `dim_neighbourhood` | Dimension | 158 neighbourhoods with geometry |
|
||||
| `dim_time` | Dimension | Date dimension |
|
||||
| `dim_cmhc_zone` | Dimension | ~20 CMHC zones with geometry |
|
||||
| `fact_census` | Fact | Census indicators by neighbourhood |
|
||||
| `fact_crime` | Fact | Crime stats by neighbourhood |
|
||||
| `fact_rentals` | Fact | Rental data by CMHC zone |
|
||||
| `fact_amenities` | Fact | Amenity counts by neighbourhood |
|
||||
|
||||
### dbt Project: `portfolio`
|
||||
|
||||
**Model Structure:**
|
||||
```
|
||||
dbt/models/
|
||||
├── shared/ # Cross-domain dimensions (stg_dimensions__time)
|
||||
├── staging/toronto/ # Toronto staging models
|
||||
├── intermediate/toronto/ # Toronto intermediate models
|
||||
└── marts/toronto/ # Toronto mart tables
|
||||
```
|
||||
|
||||
| Layer | Naming | Example |
|
||||
|-------|--------|---------|
|
||||
| Shared | `stg_dimensions__*` | `stg_dimensions__time` |
|
||||
| Staging | `stg_{source}__{entity}` | `stg_toronto__neighbourhoods` |
|
||||
| Intermediate | `int_{domain}__{transform}` | `int_neighbourhood__demographics` |
|
||||
| Marts | `mart_{domain}` | `mart_neighbourhood_overview` |
|
||||
|
||||
---
|
||||
|
||||
## Tech Stack
|
||||
|
||||
| Layer | Technology | Version |
|
||||
|-------|------------|---------|
|
||||
| Database | PostgreSQL + PostGIS | 16.x |
|
||||
| Validation | Pydantic | 2.x |
|
||||
| ORM | SQLAlchemy | 2.x |
|
||||
| Transformation | dbt-postgres | 1.7+ |
|
||||
| Data Processing | Pandas, GeoPandas | Latest |
|
||||
| Visualization | Dash + Plotly | 2.14+ |
|
||||
| UI Components | dash-mantine-components | Latest |
|
||||
| Testing | pytest | 7.0+ |
|
||||
| Python | 3.11+ | Via pyenv |
|
||||
|
||||
---
|
||||
|
||||
@@ -23,293 +195,51 @@ Two-project analytics portfolio demonstrating end-to-end data engineering, visua
|
||||
|
||||
| Branch | Purpose | Deploys To |
|
||||
|--------|---------|------------|
|
||||
| `main` | Production releases only | VPS (production) |
|
||||
| `main` | Production releases | VPS (production) |
|
||||
| `staging` | Pre-production testing | VPS (staging) |
|
||||
| `development` | Active development | Local only |
|
||||
|
||||
**Rules**:
|
||||
- All feature branches created FROM `development`
|
||||
- All feature branches merge INTO `development`
|
||||
- `development` → `staging` for testing
|
||||
- `staging` → `main` for release
|
||||
- Direct commits to `main` or `staging` are forbidden
|
||||
- Branch naming: `feature/{sprint}-{description}` or `fix/{issue-id}`
|
||||
**Rules:**
|
||||
- Feature branches from `development`: `feature/{sprint}-{description}`
|
||||
- Merge into `development` when complete
|
||||
- `development` → `staging` → `main` for releases
|
||||
- Never delete `development`
|
||||
|
||||
---
|
||||
|
||||
## Tech Stack (Locked)
|
||||
## Code Standards
|
||||
|
||||
| Layer | Technology | Version |
|
||||
|-------|------------|---------|
|
||||
| Database | PostgreSQL + PostGIS | 16.x |
|
||||
| Validation | Pydantic | ≥2.0 |
|
||||
| ORM | SQLAlchemy | ≥2.0 (2.0-style API only) |
|
||||
| Transformation | dbt-postgres | ≥1.7 |
|
||||
| Data Processing | Pandas | ≥2.1 |
|
||||
| Geospatial | GeoPandas + Shapely | ≥0.14 |
|
||||
| Visualization | Dash + Plotly | ≥2.14 |
|
||||
| UI Components | dash-mantine-components | Latest stable |
|
||||
| Testing | pytest | ≥7.0 |
|
||||
| Python | 3.11+ | Via pyenv |
|
||||
### Type Hints (Python 3.10+)
|
||||
|
||||
**Compatibility Notes**:
|
||||
- SQLAlchemy 2.0 + Pydantic 2.0 integrate well—never mix 1.x APIs
|
||||
- PostGIS extension required—enable during db init
|
||||
- Docker Compose V2 (no `version` field in compose files)
|
||||
```python
|
||||
def process(items: list[str], config: dict[str, int] | None = None) -> bool:
|
||||
...
|
||||
```
|
||||
|
||||
---
|
||||
### Imports
|
||||
|
||||
## Code Conventions
|
||||
|
||||
### Import Style
|
||||
|
||||
| Context | Style | Example |
|
||||
|---------|-------|---------|
|
||||
| Same directory | Single dot | `from .neighbourhood import NeighbourhoodParser` |
|
||||
| Sibling directory | Double dot | `from ..schemas.neighbourhood import CensusRecord` |
|
||||
| External packages | Absolute | `import pandas as pd` |
|
||||
|
||||
### Module Separation
|
||||
|
||||
| Directory | Contains | Purpose |
|
||||
|-----------|----------|---------|
|
||||
| `schemas/` | Pydantic models | Data validation |
|
||||
| `models/` | SQLAlchemy ORM | Database persistence |
|
||||
| `parsers/` | API/CSV extraction | Raw data ingestion |
|
||||
| `loaders/` | Database operations | Data loading |
|
||||
| `figures/` | Chart factories | Plotly figure generation |
|
||||
| `callbacks/` | Dash callbacks | Per-dashboard, in `pages/{dashboard}/callbacks/` |
|
||||
| `errors/` | Exceptions + handlers | Error handling |
|
||||
|
||||
### Code Standards
|
||||
|
||||
- **Type hints**: Mandatory, Python 3.10+ style (`list[str]`, `dict[str, int]`, `X | None`)
|
||||
- **Functions**: Single responsibility, verb naming, early returns over nesting
|
||||
- **Docstrings**: Google style, minimal—only for non-obvious behavior
|
||||
- **Constants**: Module-level for magic values, Pydantic BaseSettings for runtime config
|
||||
| Context | Style |
|
||||
|---------|-------|
|
||||
| Same directory | `from .module import X` |
|
||||
| Sibling directory | `from ..schemas.model import Y` |
|
||||
| External | `import pandas as pd` |
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
# errors/exceptions.py
|
||||
class PortfolioError(Exception):
|
||||
"""Base exception."""
|
||||
|
||||
class ParseError(PortfolioError):
|
||||
"""PDF/CSV parsing failed."""
|
||||
"""Data parsing failed."""
|
||||
|
||||
class ValidationError(PortfolioError):
|
||||
"""Pydantic or business rule validation failed."""
|
||||
"""Validation failed."""
|
||||
|
||||
class LoadError(PortfolioError):
|
||||
"""Database load operation failed."""
|
||||
"""Database load failed."""
|
||||
```
|
||||
|
||||
- Decorators for infrastructure concerns (logging, retry, transactions)
|
||||
- Explicit handling for domain logic (business rules, recovery strategies)
|
||||
|
||||
---
|
||||
|
||||
## Application Architecture
|
||||
|
||||
### Dash Pages Structure
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
├── app.py # Dash app factory with Pages routing
|
||||
├── config.py # Pydantic BaseSettings
|
||||
├── assets/ # CSS, images (auto-served by Dash)
|
||||
├── pages/
|
||||
│ ├── home.py # Bio landing page → /
|
||||
│ ├── toronto/
|
||||
│ │ ├── dashboard.py # Layout only → /toronto
|
||||
│ │ └── callbacks/ # Interaction logic
|
||||
│ └── energy/ # Phase 3
|
||||
├── components/ # Shared UI (navbar, footer, cards)
|
||||
├── figures/ # Shared chart factories
|
||||
├── toronto/ # Toronto data logic
|
||||
│ ├── parsers/
|
||||
│ ├── loaders/
|
||||
│ ├── schemas/ # Pydantic
|
||||
│ └── models/ # SQLAlchemy
|
||||
└── errors/
|
||||
```
|
||||
|
||||
### URL Routing (Automatic)
|
||||
|
||||
| URL | Page | Status |
|
||||
|-----|------|--------|
|
||||
| `/` | Bio landing page | Sprint 2 |
|
||||
| `/toronto` | Toronto Housing Dashboard | Sprint 6 |
|
||||
| `/energy` | Energy Pricing Dashboard | Phase 3 |
|
||||
|
||||
---
|
||||
|
||||
## Phase 1: Toronto Neighbourhood Dashboard
|
||||
|
||||
### Data Sources
|
||||
|
||||
| Track | Source | Format | Geography | Frequency |
|
||||
|-------|--------|--------|-----------|-----------|
|
||||
| Rentals | CMHC Rental Market Survey | API/CSV | ~20 Zones | Annual |
|
||||
| Neighbourhoods | City of Toronto Open Data | GeoJSON/CSV | 158 Neighbourhoods | Census |
|
||||
| Policy Events | Curated list | CSV | N/A | Event-based |
|
||||
|
||||
### Geographic Reality
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ City of Toronto Neighbourhoods (158) │ ← Primary analysis unit
|
||||
├─────────────────────────────────────────────────────────────────┤
|
||||
│ CMHC Zones (~20) — Census Tract aligned │ ← Rental data
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
### Data Model (Star Schema)
|
||||
|
||||
| Table | Type | Keys |
|
||||
|-------|------|------|
|
||||
| `fact_rentals` | Fact | → dim_time, dim_cmhc_zone |
|
||||
| `dim_time` | Dimension | date_key (PK) |
|
||||
| `dim_cmhc_zone` | Dimension | zone_key (PK), geometry |
|
||||
| `dim_neighbourhood` | Dimension | neighbourhood_id (PK), geometry |
|
||||
| `dim_policy_event` | Dimension | event_id (PK) |
|
||||
|
||||
### dbt Layer Structure
|
||||
|
||||
| Layer | Naming | Purpose |
|
||||
|-------|--------|---------|
|
||||
| Staging | `stg_{source}__{entity}` | 1:1 source, cleaned, typed |
|
||||
| Intermediate | `int_{domain}__{transform}` | Business logic, filtering |
|
||||
| Marts | `mart_{domain}` | Final analytical tables |
|
||||
|
||||
---
|
||||
|
||||
## Sprint Overview
|
||||
|
||||
| Sprint | Focus | Milestone |
|
||||
|--------|-------|-----------|
|
||||
| 1-6 | Foundation and initial dashboard | **Launch 1: Bio Live** |
|
||||
| 7 | Navigation & theme modernization | — |
|
||||
| 8 | Portfolio website expansion | **Launch 2: Website Live** |
|
||||
| 9 | Neighbourhood dashboard transition | Cleanup complete |
|
||||
| 10+ | Dashboard implementation | **Launch 3: Dashboard Live** |
|
||||
|
||||
---
|
||||
|
||||
## Scope Boundaries
|
||||
|
||||
### Phase 1 — Build These
|
||||
|
||||
- Bio landing page and portfolio website
|
||||
- CMHC rental data processor
|
||||
- Toronto neighbourhood data integration
|
||||
- PostgreSQL + PostGIS database layer
|
||||
- Star schema (facts + dimensions)
|
||||
- dbt models with tests
|
||||
- Choropleth visualization (Dash)
|
||||
- Policy event annotation layer
|
||||
|
||||
### Deferred Features
|
||||
|
||||
| Feature | Reason | When |
|
||||
|---------|--------|------|
|
||||
| Historical boundary reconciliation (140→158) | 2021+ data only for V1 | Future phase |
|
||||
| ML prediction models | Energy project scope | Phase 3 |
|
||||
| Multi-project shared infrastructure | Build first, abstract second | Future |
|
||||
|
||||
If a task seems to require deferred features, **stop and flag it**.
|
||||
|
||||
---
|
||||
|
||||
## File Structure
|
||||
|
||||
### Root-Level Files (Allowed)
|
||||
|
||||
| File | Purpose |
|
||||
|------|---------|
|
||||
| `README.md` | Project overview |
|
||||
| `CLAUDE.md` | AI assistant context |
|
||||
| `pyproject.toml` | Python packaging |
|
||||
| `.gitignore` | Git ignore rules |
|
||||
| `.env.example` | Environment template |
|
||||
| `.python-version` | pyenv version |
|
||||
| `.pre-commit-config.yaml` | Pre-commit hooks |
|
||||
| `docker-compose.yml` | Container orchestration |
|
||||
| `Makefile` | Task automation |
|
||||
|
||||
### Directory Structure
|
||||
|
||||
```
|
||||
portfolio/
|
||||
├── portfolio_app/ # Monolithic Dash application
|
||||
│ ├── app.py
|
||||
│ ├── config.py
|
||||
│ ├── assets/
|
||||
│ ├── pages/
|
||||
│ ├── components/
|
||||
│ ├── figures/
|
||||
│ ├── toronto/
|
||||
│ └── errors/
|
||||
├── tests/
|
||||
├── dbt/
|
||||
├── data/
|
||||
│ └── toronto/
|
||||
│ ├── raw/
|
||||
│ ├── processed/ # gitignored
|
||||
│ └── reference/
|
||||
├── scripts/
|
||||
│ ├── db/
|
||||
│ ├── docker/
|
||||
│ ├── deploy/
|
||||
│ ├── dbt/
|
||||
│ └── dev/
|
||||
├── docs/
|
||||
├── notebooks/
|
||||
├── backups/ # gitignored
|
||||
└── reports/ # gitignored
|
||||
```
|
||||
|
||||
### Gitignored Directories
|
||||
|
||||
- `data/*/processed/`
|
||||
- `reports/`
|
||||
- `backups/`
|
||||
- `notebooks/*.html`
|
||||
- `.env`
|
||||
- `__pycache__/`
|
||||
- `.venv/`
|
||||
|
||||
---
|
||||
|
||||
## Makefile Targets
|
||||
|
||||
| Target | Purpose |
|
||||
|--------|---------|
|
||||
| `setup` | Install deps, create .env, init pre-commit |
|
||||
| `docker-up` | Start PostgreSQL + PostGIS |
|
||||
| `docker-down` | Stop containers |
|
||||
| `db-init` | Initialize database schema |
|
||||
| `run` | Start Dash dev server |
|
||||
| `test` | Run pytest |
|
||||
| `dbt-run` | Run dbt models |
|
||||
| `dbt-test` | Run dbt tests |
|
||||
| `lint` | Run ruff linter |
|
||||
| `format` | Run ruff formatter |
|
||||
| `ci` | Run all checks |
|
||||
| `deploy` | Deploy to production |
|
||||
|
||||
---
|
||||
|
||||
## Script Standards
|
||||
|
||||
All scripts in `scripts/`:
|
||||
- Include usage comments at top
|
||||
- Idempotent where possible
|
||||
- Exit codes: 0 = success, 1 = error
|
||||
- Use `set -euo pipefail` for bash
|
||||
- Log to stdout, errors to stderr
|
||||
|
||||
---
|
||||
|
||||
## Environment Variables
|
||||
@@ -328,41 +258,61 @@ LOG_LEVEL=INFO
|
||||
|
||||
---
|
||||
|
||||
## Success Criteria
|
||||
## Makefile Targets
|
||||
|
||||
### Launch 1 (Bio Live)
|
||||
- [x] Bio page accessible via HTTPS
|
||||
- [x] All bio content rendered
|
||||
- [x] No placeholder text visible
|
||||
- [x] Mobile responsive
|
||||
- [x] Social links functional
|
||||
|
||||
### Launch 2 (Website Live)
|
||||
- [x] Full portfolio website with navigation
|
||||
- [x] About, Contact, Projects, Resume, Blog pages
|
||||
- [x] Dark mode theme support
|
||||
- [x] Sidebar navigation
|
||||
|
||||
### Launch 3 (Dashboard Live)
|
||||
- [ ] Choropleth renders neighbourhoods and CMHC zones
|
||||
- [ ] Rental data visualization works
|
||||
- [ ] Time navigation works
|
||||
- [ ] Policy event markers visible
|
||||
- [ ] Methodology documentation published
|
||||
- [ ] Data sources cited
|
||||
| Target | Purpose |
|
||||
|--------|---------|
|
||||
| `setup` | Install deps, create .env, init pre-commit |
|
||||
| `docker-up` | Start PostgreSQL + PostGIS (auto-detects x86/ARM) |
|
||||
| `docker-down` | Stop containers |
|
||||
| `docker-logs` | View container logs |
|
||||
| `db-init` | Initialize database schema |
|
||||
| `db-reset` | Drop and recreate database (DESTRUCTIVE) |
|
||||
| `load-data` | Load Toronto data from APIs, seed dev data |
|
||||
| `load-toronto-only` | Load Toronto data without dbt or seeding |
|
||||
| `seed-data` | Seed sample development data |
|
||||
| `run` | Start Dash dev server |
|
||||
| `test` | Run pytest |
|
||||
| `test-cov` | Run pytest with coverage |
|
||||
| `lint` | Run ruff linter |
|
||||
| `format` | Run ruff formatter |
|
||||
| `typecheck` | Run mypy type checker |
|
||||
| `ci` | Run all checks (lint, typecheck, test) |
|
||||
| `dbt-run` | Run dbt models |
|
||||
| `dbt-test` | Run dbt tests |
|
||||
| `dbt-docs` | Generate and serve dbt documentation |
|
||||
| `clean` | Remove build artifacts and caches |
|
||||
|
||||
---
|
||||
|
||||
## Reference Documents
|
||||
## Next Steps
|
||||
|
||||
For detailed specifications, see:
|
||||
### Deployment (Sprint 10+)
|
||||
- [ ] Production Docker configuration
|
||||
- [ ] CI/CD pipeline
|
||||
- [ ] HTTPS/SSL setup
|
||||
- [ ] Domain configuration
|
||||
|
||||
| Document | Location | Use When |
|
||||
|----------|----------|----------|
|
||||
| Dashboard vision | `docs/changes/Change-Toronto-Analysis.md` | Dashboard specification |
|
||||
| Implementation plan | `docs/changes/Change-Toronto-Analysis-Reviewed.md` | Sprint planning |
|
||||
### Data Enhancement
|
||||
- [ ] Connect to live APIs (currently using demo data)
|
||||
- [ ] Data refresh automation
|
||||
- [ ] Historical data loading
|
||||
|
||||
### Future Projects
|
||||
- Energy Pricing Analysis dashboard (planned)
|
||||
|
||||
---
|
||||
|
||||
*Reference Version: 2.0*
|
||||
*Updated: Sprint 9*
|
||||
## Related Documents
|
||||
|
||||
| Document | Purpose |
|
||||
|----------|---------|
|
||||
| `README.md` | Quick start guide |
|
||||
| `CLAUDE.md` | AI assistant context |
|
||||
| `docs/CONTRIBUTING.md` | Developer guide |
|
||||
| `notebooks/README.md` | Notebook documentation |
|
||||
|
||||
---
|
||||
|
||||
*Reference Version: 3.0*
|
||||
*Updated: January 2026*
|
||||
|
||||
@@ -1,134 +0,0 @@
|
||||
# Portfolio Bio Content
|
||||
|
||||
**Version**: 2.0
|
||||
**Last Updated**: January 2026
|
||||
**Purpose**: Content source for `portfolio_app/pages/home.py`
|
||||
|
||||
---
|
||||
|
||||
## Document Context
|
||||
|
||||
| Attribute | Value |
|
||||
|-----------|-------|
|
||||
| **Parent Document** | `portfolio_project_plan_v5.md` |
|
||||
| **Role** | Bio content and social links for landing page |
|
||||
| **Consumed By** | `portfolio_app/pages/home.py` |
|
||||
|
||||
---
|
||||
|
||||
## Headline
|
||||
|
||||
**Primary**: Leo | Data Engineer & Analytics Developer
|
||||
|
||||
**Tagline**: I build data infrastructure that actually gets used.
|
||||
|
||||
---
|
||||
|
||||
## Professional Summary
|
||||
|
||||
Over the past 5 years, I've designed and evolved an enterprise analytics platform from scratch—now processing 1B+ rows across 21 tables with Python-based ETL pipelines and dbt-style SQL transformations. The result: 40% efficiency gains, 30% reduction in call abandon rates, and dashboards that executives actually open.
|
||||
|
||||
My approach: dimensional modeling (star schema), layered transformations (staging → intermediate → marts), and automation that eliminates manual work. I've built everything from self-service analytics portals to OCR-powered receipt processing systems.
|
||||
|
||||
Currently at Summitt Energy supporting multi-market operations across Canada and 8 US states. Previously cut my teeth on IT infrastructure projects at Petrobras (Fortune 500) and the Project Management Institute.
|
||||
|
||||
---
|
||||
|
||||
## Tech Stack
|
||||
|
||||
| Category | Technologies |
|
||||
|----------|--------------|
|
||||
| **Languages** | Python, SQL |
|
||||
| **Data Processing** | Pandas, SQLAlchemy, FastAPI |
|
||||
| **Databases** | PostgreSQL, MSSQL |
|
||||
| **Visualization** | Power BI, Plotly, Dash |
|
||||
| **Patterns** | dbt, dimensional modeling, star schema |
|
||||
| **Other** | Genesys Cloud |
|
||||
|
||||
**Display Format** (for landing page):
|
||||
```
|
||||
Python (Pandas, SQLAlchemy, FastAPI) • SQL (MSSQL, PostgreSQL) • Power BI • Plotly/Dash • Genesys Cloud • dbt patterns
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Side Project
|
||||
|
||||
**Bandit Labs** — Building automation and AI tooling for small businesses.
|
||||
|
||||
*Note: Keep this brief on portfolio; link only if separate landing page exists.*
|
||||
|
||||
---
|
||||
|
||||
## Social Links
|
||||
|
||||
| Platform | URL | Icon |
|
||||
|----------|-----|------|
|
||||
| **LinkedIn** | `https://linkedin.com/in/[USERNAME]` | `lucide-react: Linkedin` |
|
||||
| **GitHub** | `https://github.com/[USERNAME]` | `lucide-react: Github` |
|
||||
|
||||
> **TODO**: Replace `[USERNAME]` placeholders with actual URLs before bio page launch.
|
||||
|
||||
---
|
||||
|
||||
## Availability Statement
|
||||
|
||||
Open to **Senior Data Analyst**, **Analytics Engineer**, and **BI Developer** opportunities in Toronto or remote.
|
||||
|
||||
---
|
||||
|
||||
## Portfolio Projects Section
|
||||
|
||||
*Dynamically populated based on deployed projects.*
|
||||
|
||||
| Project | Status | Link |
|
||||
|---------|--------|------|
|
||||
| Toronto Housing Dashboard | In Development | `/toronto` |
|
||||
| Energy Pricing Analysis | Planned | `/energy` |
|
||||
|
||||
**Display Logic**:
|
||||
- Show only projects with `status = deployed`
|
||||
- "In Development" projects can show as coming soon or be hidden (user preference)
|
||||
|
||||
---
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
### Content Hierarchy for `home.py`
|
||||
|
||||
```
|
||||
1. Name + Tagline (hero section)
|
||||
2. Professional Summary (2-3 paragraphs)
|
||||
3. Tech Stack (horizontal chips or inline list)
|
||||
4. Portfolio Projects (cards linking to dashboards)
|
||||
5. Social Links (icon buttons)
|
||||
6. Availability statement (subtle, bottom)
|
||||
```
|
||||
|
||||
### Styling Recommendations
|
||||
|
||||
- Clean, minimal — let the projects speak
|
||||
- Dark/light mode support via dash-mantine-components theme
|
||||
- No headshot required (optional)
|
||||
- Mobile-responsive layout
|
||||
|
||||
### Content Updates
|
||||
|
||||
When updating bio content:
|
||||
1. Edit this document
|
||||
2. Update `home.py` to reflect changes
|
||||
3. Redeploy
|
||||
|
||||
---
|
||||
|
||||
## Related Documents
|
||||
|
||||
| Document | Relationship |
|
||||
|----------|--------------|
|
||||
| `portfolio_project_plan_v5.md` | Parent — references this for bio content |
|
||||
| `portfolio_app/pages/home.py` | Consumer — implements this content |
|
||||
|
||||
---
|
||||
|
||||
*Document Version: 2.0*
|
||||
*Updated: January 2026*
|
||||
@@ -1,276 +0,0 @@
|
||||
# Toronto Neighbourhood Dashboard — Implementation Plan
|
||||
|
||||
**Document Type:** Execution Guide
|
||||
**Target:** Transition from TRREB-based to Neighbourhood-based Dashboard
|
||||
**Version:** 2.0 | January 2026
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Transition from TRREB district-based housing dashboard to a comprehensive Toronto Neighbourhood Dashboard built around the city's 158 official neighbourhoods.
|
||||
|
||||
**Key Changes:**
|
||||
- Geographic foundation: TRREB districts (~35) → City Neighbourhoods (158)
|
||||
- Data sources: PDF parsing → Open APIs (Toronto Open Data, Toronto Police, CMHC)
|
||||
- Scope: Housing-only → 5 thematic tabs (Overview, Housing, Safety, Demographics, Amenities)
|
||||
|
||||
---
|
||||
|
||||
## Phase 1: Repository Cleanup
|
||||
|
||||
### Files to DELETE
|
||||
|
||||
| File | Reason |
|
||||
|------|--------|
|
||||
| `portfolio_app/toronto/schemas/trreb.py` | TRREB schema obsolete |
|
||||
| `portfolio_app/toronto/parsers/trreb.py` | PDF parsing no longer needed |
|
||||
| `portfolio_app/toronto/loaders/trreb.py` | TRREB loading logic obsolete |
|
||||
| `dbt/models/staging/stg_trreb__purchases.sql` | TRREB staging obsolete |
|
||||
| `dbt/models/intermediate/int_purchases__monthly.sql` | TRREB intermediate obsolete |
|
||||
| `dbt/models/marts/mart_toronto_purchases.sql` | Will rebuild for neighbourhood grain |
|
||||
|
||||
### Files to MODIFY (Remove TRREB References)
|
||||
|
||||
| File | Action |
|
||||
|------|--------|
|
||||
| `portfolio_app/toronto/schemas/__init__.py` | Remove TRREB imports |
|
||||
| `portfolio_app/toronto/parsers/__init__.py` | Remove TRREB parser imports |
|
||||
| `portfolio_app/toronto/loaders/__init__.py` | Remove TRREB loader imports |
|
||||
| `portfolio_app/toronto/models/facts.py` | Remove `FactPurchases` model |
|
||||
| `portfolio_app/toronto/models/dimensions.py` | Remove `DimTRREBDistrict` model |
|
||||
| `portfolio_app/toronto/demo_data.py` | Remove TRREB demo data |
|
||||
| `dbt/models/sources.yml` | Remove TRREB source definitions |
|
||||
| `dbt/models/schema.yml` | Remove TRREB model documentation |
|
||||
|
||||
### Files to KEEP (Reusable)
|
||||
|
||||
| File | Why |
|
||||
|------|-----|
|
||||
| `portfolio_app/toronto/schemas/cmhc.py` | CMHC data still used |
|
||||
| `portfolio_app/toronto/parsers/cmhc.py` | Reusable with modifications |
|
||||
| `portfolio_app/toronto/loaders/base.py` | Generic database utilities |
|
||||
| `portfolio_app/toronto/loaders/dimensions.py` | Dimension loading patterns |
|
||||
| `portfolio_app/toronto/models/base.py` | SQLAlchemy base class |
|
||||
| `portfolio_app/figures/*.py` | All chart factories reusable |
|
||||
| `portfolio_app/components/*.py` | All UI components reusable |
|
||||
|
||||
---
|
||||
|
||||
## Phase 2: Documentation Updates
|
||||
|
||||
| Document | Action |
|
||||
|----------|--------|
|
||||
| `CLAUDE.md` | Update data model section, mark transition complete |
|
||||
| `docs/PROJECT_REFERENCE.md` | Update architecture, data sources |
|
||||
| `docs/toronto_housing_dashboard_spec_v5.md` | Archive or delete |
|
||||
| `docs/wbs_sprint_plan_v4.md` | Archive or delete |
|
||||
|
||||
---
|
||||
|
||||
## Phase 3: New Data Model
|
||||
|
||||
### Star Schema (Neighbourhood-Centric)
|
||||
|
||||
| Table | Type | Description |
|
||||
|-------|------|-------------|
|
||||
| `dim_neighbourhood` | Central Dimension | 158 neighbourhoods with geometry |
|
||||
| `dim_time` | Dimension | Date dimension (keep existing) |
|
||||
| `dim_cmhc_zone` | Bridge Dimension | 15 CMHC zones with neighbourhood mapping |
|
||||
| `bridge_cmhc_neighbourhood` | Bridge | Zone-to-neighbourhood area weights |
|
||||
| `fact_census` | Fact | Census indicators by neighbourhood |
|
||||
| `fact_crime` | Fact | Crime stats by neighbourhood |
|
||||
| `fact_rentals` | Fact | Rental data by CMHC zone (keep existing) |
|
||||
| `fact_amenities` | Fact | Amenity counts by neighbourhood |
|
||||
|
||||
### New Schema Files
|
||||
|
||||
| File | Contains |
|
||||
|------|----------|
|
||||
| `toronto/schemas/neighbourhood.py` | NeighbourhoodRecord, CensusRecord, CrimeRecord |
|
||||
| `toronto/schemas/amenities.py` | AmenityType enum, AmenityRecord |
|
||||
|
||||
### New Parser Files
|
||||
|
||||
| File | Data Source | API |
|
||||
|------|-------------|-----|
|
||||
| `toronto/parsers/toronto_open_data.py` | Neighbourhoods, Census, Parks, Schools, Childcare | Toronto Open Data Portal |
|
||||
| `toronto/parsers/toronto_police.py` | Crime Rates, MCI, Shootings | Toronto Police Portal |
|
||||
|
||||
### New Loader Files
|
||||
|
||||
| File | Purpose |
|
||||
|------|---------|
|
||||
| `toronto/loaders/neighbourhoods.py` | Load GeoJSON boundaries |
|
||||
| `toronto/loaders/census.py` | Load neighbourhood profiles |
|
||||
| `toronto/loaders/crime.py` | Load crime statistics |
|
||||
| `toronto/loaders/amenities.py` | Load parks, schools, childcare |
|
||||
| `toronto/loaders/cmhc_crosswalk.py` | Build CMHC-neighbourhood bridge |
|
||||
|
||||
---
|
||||
|
||||
## Phase 4: dbt Restructuring
|
||||
|
||||
### Staging Layer
|
||||
|
||||
| Model | Source |
|
||||
|-------|--------|
|
||||
| `stg_toronto__neighbourhoods` | dim_neighbourhood |
|
||||
| `stg_toronto__census` | fact_census |
|
||||
| `stg_toronto__crime` | fact_crime |
|
||||
| `stg_toronto__amenities` | fact_amenities |
|
||||
| `stg_cmhc__rentals` | fact_rentals (modify existing) |
|
||||
| `stg_cmhc__zone_crosswalk` | bridge_cmhc_neighbourhood |
|
||||
|
||||
### Intermediate Layer
|
||||
|
||||
| Model | Purpose |
|
||||
|-------|---------|
|
||||
| `int_neighbourhood__demographics` | Combined census demographics |
|
||||
| `int_neighbourhood__housing` | Housing indicators |
|
||||
| `int_neighbourhood__crime_summary` | Aggregated crime by type |
|
||||
| `int_neighbourhood__amenity_scores` | Normalized amenity metrics |
|
||||
| `int_rentals__neighbourhood_allocated` | CMHC rentals allocated to neighbourhoods |
|
||||
|
||||
### Mart Layer (One per Tab)
|
||||
|
||||
| Model | Tab | Key Metrics |
|
||||
|-------|-----|-------------|
|
||||
| `mart_neighbourhood_overview` | Overview | Composite livability score |
|
||||
| `mart_neighbourhood_housing` | Housing | Affordability index, rent-to-income |
|
||||
| `mart_neighbourhood_safety` | Safety | Crime rates, YoY change |
|
||||
| `mart_neighbourhood_demographics` | Demographics | Income, age, diversity |
|
||||
| `mart_neighbourhood_amenities` | Amenities | Parks, schools, transit per capita |
|
||||
|
||||
---
|
||||
|
||||
## Phase 5: Dashboard Implementation
|
||||
|
||||
### Tab Structure
|
||||
|
||||
```
|
||||
pages/toronto/
|
||||
├── dashboard.py # Main layout with tab navigation
|
||||
├── tabs/
|
||||
│ ├── overview.py # Composite livability
|
||||
│ ├── housing.py # Affordability
|
||||
│ ├── safety.py # Crime
|
||||
│ ├── demographics.py # Population
|
||||
│ └── amenities.py # Services
|
||||
└── callbacks/
|
||||
├── map_callbacks.py
|
||||
├── chart_callbacks.py
|
||||
└── selection_callbacks.py
|
||||
```
|
||||
|
||||
### Layout Pattern (All Tabs)
|
||||
|
||||
Each tab follows the same structure:
|
||||
1. **Choropleth Map** (left) — 158 neighbourhoods, click to select
|
||||
2. **KPI Cards** (right) — 3-4 contextual metrics
|
||||
3. **Supporting Charts** (bottom) — Trend + comparison visualizations
|
||||
4. **Details Panel** (collapsible) — All metrics for selected neighbourhood
|
||||
|
||||
### Graphs by Tab
|
||||
|
||||
| Tab | Choropleth Metric | Chart 1 | Chart 2 |
|
||||
|-----|-------------------|---------|---------|
|
||||
| Overview | Livability score | Top/Bottom 10 bar | Income vs Crime scatter |
|
||||
| Housing | Affordability index | Rent trend (5yr line) | Dwelling types (pie/bar) |
|
||||
| Safety | Crime rate per 100K | Crime breakdown (stacked bar) | Crime trend (5yr line) |
|
||||
| Demographics | Median income | Age pyramid | Top languages (bar) |
|
||||
| Amenities | Park area per capita | Amenity radar | Transit accessibility (bar) |
|
||||
|
||||
---
|
||||
|
||||
## Phase 6: Jupyter Notebooks
|
||||
|
||||
### Purpose
|
||||
|
||||
One notebook per graph to document:
|
||||
1. **Data Reference** — How the data was built (query, transformation steps, sample output)
|
||||
2. **Data Visualization** — Import figure factory, render the graph
|
||||
|
||||
### Directory Structure
|
||||
|
||||
```
|
||||
notebooks/
|
||||
├── README.md
|
||||
├── overview/
|
||||
├── housing/
|
||||
├── safety/
|
||||
├── demographics/
|
||||
└── amenities/
|
||||
```
|
||||
|
||||
### Notebook Template
|
||||
|
||||
```markdown
|
||||
# [Graph Name]
|
||||
|
||||
## 1. Data Reference
|
||||
|
||||
### Source Tables
|
||||
- List tables/marts used
|
||||
- Grain of each table
|
||||
|
||||
### Query
|
||||
```sql
|
||||
SELECT ... FROM ...
|
||||
```
|
||||
|
||||
### Transformation Steps
|
||||
1. Step description
|
||||
2. Step description
|
||||
|
||||
### Sample Data
|
||||
```python
|
||||
df = pd.read_sql(query, engine)
|
||||
df.head(10)
|
||||
```
|
||||
|
||||
## 2. Data Visualization
|
||||
|
||||
```python
|
||||
from portfolio_app.figures.choropleth import create_choropleth_figure
|
||||
fig = create_choropleth_figure(...)
|
||||
fig.show()
|
||||
```
|
||||
```
|
||||
|
||||
Create one notebook per graph as each is implemented (15 total across 5 tabs).
|
||||
|
||||
---
|
||||
|
||||
## Phase 7: Final Documentation Review
|
||||
|
||||
After all implementation, audit and update:
|
||||
|
||||
- [ ] `CLAUDE.md` — Project status, app structure, data model, URL routes
|
||||
- [ ] `README.md` — Project description, installation, quick start
|
||||
- [ ] `docs/PROJECT_REFERENCE.md` — Architecture matches implementation
|
||||
- [ ] Remove or archive legacy spec documents
|
||||
|
||||
---
|
||||
|
||||
## Data Source Reference
|
||||
|
||||
| Source | Datasets | URL |
|
||||
|--------|----------|-----|
|
||||
| Toronto Open Data | Neighbourhoods, Census Profiles, Parks, Schools, Childcare, TTC | open.toronto.ca |
|
||||
| Toronto Police | Crime Rates, MCI, Shootings | data.torontopolice.on.ca |
|
||||
| CMHC | Rental Market Survey | cmhc-schl.gc.ca |
|
||||
|
||||
---
|
||||
|
||||
## CMHC Zone Mapping Note
|
||||
|
||||
CMHC uses 15 zones that don't align with 158 neighbourhoods. Strategy:
|
||||
- Create `bridge_cmhc_neighbourhood` with area weights
|
||||
- Allocate rental metrics proportionally to overlapping neighbourhoods
|
||||
- Document methodology in `/toronto/methodology` page
|
||||
|
||||
---
|
||||
|
||||
*Document Version: 2.0*
|
||||
*Trimmed from v1.0 for execution clarity*
|
||||
@@ -1,423 +0,0 @@
|
||||
# Toronto Neighbourhood Dashboard — Deliverables
|
||||
|
||||
**Project Type:** Interactive Data Visualization Dashboard
|
||||
**Geographic Scope:** City of Toronto, 158 Official Neighbourhoods
|
||||
**Author:** Leo Miranda
|
||||
**Version:** 1.0 | January 2026
|
||||
|
||||
---
|
||||
|
||||
## Executive Summary
|
||||
|
||||
Multi-tab analytics dashboard built around Toronto's official neighbourhood boundaries. The core interaction is a choropleth map where users explore the city through different thematic lenses—housing affordability, safety, demographics, amenities—with supporting visualizations that tell a cohesive story per theme.
|
||||
|
||||
**Primary Goals:**
|
||||
1. Demonstrate interactive data visualization skills (Plotly/Dash)
|
||||
2. Showcase data engineering capabilities (multi-source ETL, dimensional modeling)
|
||||
3. Create a portfolio piece with genuine analytical value
|
||||
|
||||
---
|
||||
|
||||
## Part 1: Geographic Foundation (Required First)
|
||||
|
||||
| Dataset | Source | Format | Last Updated | Download |
|
||||
|---------|--------|--------|--------------|----------|
|
||||
| **Neighbourhoods Boundaries** | Toronto Open Data | GeoJSON | 2024 | [Link](https://open.toronto.ca/dataset/neighbourhoods/) |
|
||||
| **Neighbourhood Profiles** | Toronto Open Data | CSV | 2021 Census | [Link](https://open.toronto.ca/dataset/neighbourhood-profiles/) |
|
||||
|
||||
**Critical Notes:**
|
||||
- Toronto uses 158 official neighbourhoods (updated 2024, was 140)
|
||||
- GeoJSON includes `AREA_ID` for joining to tabular data
|
||||
- Neighbourhood Profiles has 2,400+ indicators per neighbourhood from Census
|
||||
|
||||
---
|
||||
|
||||
## Part 2: Tier 1 — MVP Datasets
|
||||
|
||||
| Dataset | Source | Measures Available | Update Freq | Granularity |
|
||||
|---------|--------|-------------------|-------------|-------------|
|
||||
| **Neighbourhoods GeoJSON** | Toronto Open Data | Boundary polygons, area IDs | Static | Neighbourhood |
|
||||
| **Neighbourhood Profiles (full)** | Toronto Open Data | 2,400+ Census indicators | Every 5 years | Neighbourhood |
|
||||
| **Neighbourhood Crime Rates** | Toronto Police Portal | MCI rates per 100K by year | Annual | Neighbourhood |
|
||||
| **CMHC Rental Market Survey** | CMHC Portal | Avg rent by bedroom, vacancy rate | Annual (Oct) | 15 CMHC Zones |
|
||||
| **Parks** | Toronto Open Data | Park locations, area, type | Annual | Point/Polygon |
|
||||
|
||||
**Total API/Download Calls:** 5
|
||||
**Data Volume:** ~50MB combined
|
||||
|
||||
### Tier 1 Measures to Extract
|
||||
|
||||
**From Neighbourhood Profiles:**
|
||||
- Population, population density
|
||||
- Median household income
|
||||
- Age distribution (0-14, 15-24, 25-44, 45-64, 65+)
|
||||
- % Immigrants, % Visible minorities
|
||||
- Top languages spoken
|
||||
- Unemployment rate
|
||||
- Education attainment (% with post-secondary)
|
||||
- Housing tenure (own vs rent %)
|
||||
- Dwelling types distribution
|
||||
- Average rent, housing costs as % of income
|
||||
|
||||
**From Crime Rates:**
|
||||
- Total MCI rate per 100K population
|
||||
- Year-over-year crime trend
|
||||
|
||||
**From CMHC:**
|
||||
- Average monthly rent (1BR, 2BR, 3BR)
|
||||
- Vacancy rates
|
||||
|
||||
**From Parks:**
|
||||
- Park count per neighbourhood
|
||||
- Park area per capita
|
||||
|
||||
---
|
||||
|
||||
## Part 3: Tier 2 — Expansion Datasets
|
||||
|
||||
| Dataset | Source | Measures Available | Update Freq | Granularity |
|
||||
|---------|--------|-------------------|-------------|-------------|
|
||||
| **Major Crime Indicators (MCI)** | Toronto Police Portal | Assault, B&E, auto theft, robbery, theft over | Quarterly | Neighbourhood |
|
||||
| **Shootings & Firearm Discharges** | Toronto Police Portal | Shooting incidents, injuries, fatalities | Quarterly | Neighbourhood |
|
||||
| **Building Permits** | Toronto Open Data | New construction, permits by type | Monthly | Address-level |
|
||||
| **Schools** | Toronto Open Data | Public/Catholic, elementary/secondary | Annual | Point |
|
||||
| **TTC Routes & Stops** | Toronto Open Data | Route geometry, stop locations | Static | Route/Stop |
|
||||
| **Licensed Child Care Centres** | Toronto Open Data | Capacity, ages served, locations | Annual | Point |
|
||||
|
||||
### Tier 2 Measures to Extract
|
||||
|
||||
**From MCI Details:**
|
||||
- Breakdown by crime type (assault, B&E, auto theft, robbery, theft over)
|
||||
|
||||
**From Shootings:**
|
||||
- Shooting incidents count
|
||||
- Injuries/fatalities
|
||||
|
||||
**From Building Permits:**
|
||||
- New construction permits (trailing 12 months)
|
||||
- Permit types distribution
|
||||
|
||||
**From Schools:**
|
||||
- Schools per 1000 children
|
||||
- School type breakdown
|
||||
|
||||
**From TTC:**
|
||||
- Transit stops within neighbourhood
|
||||
- Transit accessibility score
|
||||
|
||||
**From Child Care:**
|
||||
- Child care spaces per capita
|
||||
- Coverage by age group
|
||||
|
||||
---
|
||||
|
||||
## Part 4: Data Sources by Thematic Group
|
||||
|
||||
### GROUP A: Housing & Affordability
|
||||
|
||||
| Dataset | Tier | Measures | Update Freq |
|
||||
|---------|------|----------|-------------|
|
||||
| Neighbourhood Profiles (Housing) | 1 | Avg rent, ownership %, dwelling types, housing costs as % of income | Every 5 years |
|
||||
| CMHC Rental Market Survey | 1 | Avg rent by bedroom, vacancy rate, rental universe | Annual |
|
||||
| Building Permits | 2 | New construction, permits by type | Monthly |
|
||||
|
||||
**Calculated Metrics:**
|
||||
- Rent-to-Income Ratio (CMHC rent ÷ Census income)
|
||||
- Affordability Index (% of income spent on housing)
|
||||
|
||||
---
|
||||
|
||||
### GROUP B: Safety & Crime
|
||||
|
||||
| Dataset | Tier | Measures | Update Freq |
|
||||
|---------|------|----------|-------------|
|
||||
| Neighbourhood Crime Rates | 1 | MCI rates per 100K pop by year | Annual |
|
||||
| Major Crime Indicators (MCI) | 2 | Assault, B&E, auto theft, robbery, theft over | Quarterly |
|
||||
| Shootings & Firearm Discharges | 2 | Shooting incidents, injuries, fatalities | Quarterly |
|
||||
|
||||
**Calculated Metrics:**
|
||||
- Year-over-year crime change %
|
||||
- Crime type distribution
|
||||
|
||||
---
|
||||
|
||||
### GROUP C: Demographics & Community
|
||||
|
||||
| Dataset | Tier | Measures | Update Freq |
|
||||
|---------|------|----------|-------------|
|
||||
| Neighbourhood Profiles (Demographics) | 1 | Age distribution, household composition, income | Every 5 years |
|
||||
| Neighbourhood Profiles (Immigration) | 1 | Immigration status, visible minorities, languages | Every 5 years |
|
||||
| Neighbourhood Profiles (Education) | 1 | Education attainment, field of study | Every 5 years |
|
||||
| Neighbourhood Profiles (Labour) | 1 | Employment rate, occupation, industry | Every 5 years |
|
||||
|
||||
---
|
||||
|
||||
### GROUP D: Transportation & Mobility
|
||||
|
||||
| Dataset | Tier | Measures | Update Freq |
|
||||
|---------|------|----------|-------------|
|
||||
| Commute Mode (Census) | 1 | % car, transit, walk, bike | Every 5 years |
|
||||
| TTC Routes & Stops | 2 | Route geometry, stop locations | Static |
|
||||
|
||||
**Calculated Metrics:**
|
||||
- Transit accessibility (stops within 500m of neighbourhood centroid)
|
||||
|
||||
---
|
||||
|
||||
### GROUP E: Amenities & Services
|
||||
|
||||
| Dataset | Tier | Measures | Update Freq |
|
||||
|---------|------|----------|-------------|
|
||||
| Parks | 1 | Park locations, area, type | Annual |
|
||||
| Schools | 2 | Public/Catholic, elementary/secondary | Annual |
|
||||
| Licensed Child Care Centres | 2 | Capacity, ages served | Annual |
|
||||
|
||||
**Calculated Metrics:**
|
||||
- Park area per capita
|
||||
- Schools per 1000 children (ages 5-17)
|
||||
- Child care spaces per 1000 children (ages 0-4)
|
||||
|
||||
---
|
||||
|
||||
## Part 5: Tab Structure
|
||||
|
||||
### Tab Architecture
|
||||
|
||||
```
|
||||
┌────────────────────────────────────────────────────────────────┐
|
||||
│ [Overview] [Housing] [Safety] [Demographics] [Amenities] │
|
||||
├────────────────────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ ┌─────────────────────────────────┐ ┌────────────────┐ │
|
||||
│ │ │ │ KPI Card 1 │ │
|
||||
│ │ CHOROPLETH MAP │ ├────────────────┤ │
|
||||
│ │ (158 Neighbourhoods) │ │ KPI Card 2 │ │
|
||||
│ │ │ ├────────────────┤ │
|
||||
│ │ Click to select │ │ KPI Card 3 │ │
|
||||
│ │ │ └────────────────┘ │
|
||||
│ └─────────────────────────────────┘ │
|
||||
│ │
|
||||
│ ┌─────────────────────┐ ┌─────────────────────┐ │
|
||||
│ │ Supporting Chart 1 │ │ Supporting Chart 2 │ │
|
||||
│ │ (Context/Trend) │ │ (Comparison/Rank) │ │
|
||||
│ └─────────────────────┘ └─────────────────────┘ │
|
||||
│ │
|
||||
│ [Neighbourhood: Selected Name] ──────────────────────── │
|
||||
│ Details panel with all metrics for selected area │
|
||||
└────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Tab 1: Overview (Default Landing)
|
||||
|
||||
**Story:** "How do Toronto neighbourhoods compare across key livability metrics?"
|
||||
|
||||
| Element | Content | Data Source |
|
||||
|---------|---------|-------------|
|
||||
| Map Colour | Composite livability score | Calculated from weighted metrics |
|
||||
| KPI Cards | Population, Median Income, Avg Crime Rate | Neighbourhood Profiles, Crime Rates |
|
||||
| Chart 1 | Top 10 / Bottom 10 by livability score | Calculated |
|
||||
| Chart 2 | Income vs Crime scatter plot | Neighbourhood Profiles, Crime Rates |
|
||||
|
||||
**Metric Selector:** Allow user to change map colour by any single metric.
|
||||
|
||||
---
|
||||
|
||||
### Tab 2: Housing & Affordability
|
||||
|
||||
**Story:** "Where can you afford to live, and what's being built?"
|
||||
|
||||
| Element | Content | Data Source |
|
||||
|---------|---------|-------------|
|
||||
| Map Colour | Rent-to-Income Ratio (Affordability Index) | CMHC + Census income |
|
||||
| KPI Cards | Median Rent (1BR), Vacancy Rate, New Permits (12mo) | CMHC, Building Permits |
|
||||
| Chart 1 | Rent trend (5-year line chart by bedroom) | CMHC historical |
|
||||
| Chart 2 | Dwelling type breakdown (pie/bar) | Neighbourhood Profiles |
|
||||
|
||||
**Metric Selector:** Toggle between rent, ownership %, dwelling types.
|
||||
|
||||
---
|
||||
|
||||
### Tab 3: Safety
|
||||
|
||||
**Story:** "How safe is each neighbourhood, and what crimes are most common?"
|
||||
|
||||
| Element | Content | Data Source |
|
||||
|---------|---------|-------------|
|
||||
| Map Colour | Total MCI Rate per 100K | Crime Rates |
|
||||
| KPI Cards | Total Crimes, YoY Change %, Shooting Incidents | Crime Rates, Shootings |
|
||||
| Chart 1 | Crime type breakdown (stacked bar) | MCI Details |
|
||||
| Chart 2 | 5-year crime trend (line chart) | Crime Rates historical |
|
||||
|
||||
**Metric Selector:** Toggle between total crime, specific crime types, shootings.
|
||||
|
||||
---
|
||||
|
||||
### Tab 4: Demographics
|
||||
|
||||
**Story:** "Who lives here? Age, income, diversity."
|
||||
|
||||
| Element | Content | Data Source |
|
||||
|---------|---------|-------------|
|
||||
| Map Colour | Median Household Income | Neighbourhood Profiles |
|
||||
| KPI Cards | Population, % Immigrant, Unemployment Rate | Neighbourhood Profiles |
|
||||
| Chart 1 | Age distribution (population pyramid or bar) | Neighbourhood Profiles |
|
||||
| Chart 2 | Top languages spoken (horizontal bar) | Neighbourhood Profiles |
|
||||
|
||||
**Metric Selector:** Income, immigrant %, age groups, education.
|
||||
|
||||
---
|
||||
|
||||
### Tab 5: Amenities & Services
|
||||
|
||||
**Story:** "What's nearby? Parks, schools, child care, transit."
|
||||
|
||||
| Element | Content | Data Source |
|
||||
|---------|---------|-------------|
|
||||
| Map Colour | Park Area per Capita | Parks + Population |
|
||||
| KPI Cards | Parks Count, Schools Count, Child Care Spaces | Multiple datasets |
|
||||
| Chart 1 | Amenity density comparison (radar or bar) | Calculated |
|
||||
| Chart 2 | Transit accessibility (stops within 500m) | TTC Stops |
|
||||
|
||||
**Metric Selector:** Parks, schools, child care, transit access.
|
||||
|
||||
---
|
||||
|
||||
## Part 6: Data Pipeline Architecture
|
||||
|
||||
### ETL Flow
|
||||
|
||||
```
|
||||
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
|
||||
│ DATA SOURCES │ │ STAGING LAYER │ │ MART LAYER │
|
||||
│ │ │ │ │ │
|
||||
│ Toronto Open │────▶│ stg_geography │────▶│ dim_neighbourhood│
|
||||
│ Data Portal │ │ stg_census │ │ fact_crime │
|
||||
│ │ │ stg_crime │ │ fact_housing │
|
||||
│ CMHC Portal │────▶│ stg_rental │ │ fact_amenities │
|
||||
│ │ │ stg_permits │ │ │
|
||||
│ Toronto Police │────▶│ stg_amenities │ │ agg_dashboard │
|
||||
│ Portal │ │ stg_childcare │ │ (pre-computed) │
|
||||
└─────────────────┘ └─────────────────┘ └─────────────────┘
|
||||
```
|
||||
|
||||
### Key Transformations
|
||||
|
||||
| Transformation | Description |
|
||||
|----------------|-------------|
|
||||
| **Geography Standardization** | Ensure all datasets use `neighbourhood_id` (AREA_ID from GeoJSON) |
|
||||
| **Census Pivot** | Neighbourhood Profiles is wide format — pivot to metrics per neighbourhood |
|
||||
| **CMHC Zone Mapping** | Create crosswalk from 15 CMHC zones to 158 neighbourhoods |
|
||||
| **Amenity Aggregation** | Spatial join point data (schools, parks, child care) to neighbourhood polygons |
|
||||
| **Rate Calculations** | Normalize counts to per-capita or per-100K |
|
||||
|
||||
### Data Refresh Schedule
|
||||
|
||||
| Layer | Frequency | Trigger |
|
||||
|-------|-----------|---------|
|
||||
| Staging (API pulls) | Weekly | Scheduled job |
|
||||
| Marts (transforms) | Weekly | Post-staging |
|
||||
| Dashboard cache | On-demand | User refresh button |
|
||||
|
||||
---
|
||||
|
||||
## Part 7: Technical Stack
|
||||
|
||||
### Core Stack
|
||||
|
||||
| Component | Technology | Rationale |
|
||||
|-----------|------------|-----------|
|
||||
| **Frontend** | Plotly Dash | Production-ready, rapid iteration |
|
||||
| **Mapping** | Plotly `choropleth_mapbox` | Native Dash integration |
|
||||
| **Data Store** | PostgreSQL + PostGIS | Spatial queries, existing expertise |
|
||||
| **ETL** | Python (Pandas, SQLAlchemy) | Existing stack |
|
||||
| **Deployment** | Render / Railway | Free tier, easy Dash hosting |
|
||||
|
||||
### Alternative (Portfolio Stretch)
|
||||
|
||||
| Component | Technology | Why Consider |
|
||||
|-----------|------------|--------------|
|
||||
| **Frontend** | React + deck.gl | More "modern" for portfolio |
|
||||
| **Data Store** | DuckDB | Serverless, embeddable |
|
||||
| **ETL** | dbt | Aligns with skills roadmap |
|
||||
|
||||
---
|
||||
|
||||
## Appendix A: Data Source URLs
|
||||
|
||||
| Source | URL |
|
||||
|--------|-----|
|
||||
| Toronto Open Data — Neighbourhoods | https://open.toronto.ca/dataset/neighbourhoods/ |
|
||||
| Toronto Open Data — Neighbourhood Profiles | https://open.toronto.ca/dataset/neighbourhood-profiles/ |
|
||||
| Toronto Police — Neighbourhood Crime Rates | https://data.torontopolice.on.ca/datasets/neighbourhood-crime-rates-open-data |
|
||||
| Toronto Police — MCI | https://data.torontopolice.on.ca/datasets/major-crime-indicators-open-data |
|
||||
| Toronto Police — Shootings | https://data.torontopolice.on.ca/datasets/shootings-firearm-discharges-open-data |
|
||||
| CMHC Rental Market Survey | https://www.cmhc-schl.gc.ca/professionals/housing-markets-data-and-research/housing-data/data-tables/rental-market |
|
||||
| Toronto Open Data — Parks | https://open.toronto.ca/dataset/parks/ |
|
||||
| Toronto Open Data — Schools | https://open.toronto.ca/dataset/school-locations-all-types/ |
|
||||
| Toronto Open Data — Building Permits | https://open.toronto.ca/dataset/building-permits-cleared-permits/ |
|
||||
| Toronto Open Data — Child Care | https://open.toronto.ca/dataset/licensed-child-care-centres/ |
|
||||
| Toronto Open Data — TTC Routes | https://open.toronto.ca/dataset/ttc-routes-and-schedules/ |
|
||||
|
||||
---
|
||||
|
||||
## Appendix B: Colour Palettes
|
||||
|
||||
### Affordability (Diverging)
|
||||
| Status | Hex | Usage |
|
||||
|--------|-----|-------|
|
||||
| Affordable (<30% income) | `#2ecc71` | Green |
|
||||
| Stretched (30-50%) | `#f1c40f` | Yellow |
|
||||
| Unaffordable (>50%) | `#e74c3c` | Red |
|
||||
|
||||
### Safety (Sequential)
|
||||
| Status | Hex | Usage |
|
||||
|--------|-----|-------|
|
||||
| Safest (lowest crime) | `#27ae60` | Dark green |
|
||||
| Moderate | `#f39c12` | Orange |
|
||||
| Highest Crime | `#c0392b` | Dark red |
|
||||
|
||||
### Demographics — Income (Sequential)
|
||||
| Level | Hex | Usage |
|
||||
|-------|-----|-------|
|
||||
| Highest Income | `#1a5276` | Dark blue |
|
||||
| Mid Income | `#5dade2` | Light blue |
|
||||
| Lowest Income | `#ecf0f1` | Light gray |
|
||||
|
||||
### General Recommendation
|
||||
Use **Viridis** or **Plasma** colorscales for perceptually uniform gradients on continuous metrics.
|
||||
|
||||
---
|
||||
|
||||
## Appendix C: Glossary
|
||||
|
||||
| Term | Definition |
|
||||
|------|------------|
|
||||
| **MCI** | Major Crime Indicators — Assault, B&E, Auto Theft, Robbery, Theft Over |
|
||||
| **CMHC Zone** | Canada Mortgage and Housing Corporation rental market survey zones (15 in Toronto) |
|
||||
| **Rent-to-Income Ratio** | Monthly rent ÷ monthly household income; <30% is considered affordable |
|
||||
| **PostGIS** | PostgreSQL extension for geographic data |
|
||||
| **Choropleth** | Thematic map where areas are shaded based on a statistical variable |
|
||||
|
||||
---
|
||||
|
||||
## Appendix D: Interview Talking Points
|
||||
|
||||
When discussing this project in interviews, emphasize:
|
||||
|
||||
1. **Data Engineering:** "I built a multi-source ETL pipeline that standardizes geographic keys across Census data, police data, and CMHC rental surveys—three different granularities I had to reconcile."
|
||||
|
||||
2. **Dimensional Modeling:** "The data model follows star schema patterns with a central neighbourhood dimension table and fact tables for crime, housing, and amenities."
|
||||
|
||||
3. **dbt Patterns:** "The transformation layer uses staging → intermediate → mart patterns, which I've documented for maintainability."
|
||||
|
||||
4. **Business Value:** "The dashboard answers questions like 'Where can a young professional afford to live that's safe and has good transit?' — turning raw data into actionable insights."
|
||||
|
||||
5. **Technical Decisions:** "I chose Plotly Dash over a React frontend because it let me iterate faster while maintaining production-quality interactivity. For a portfolio piece, speed to working demo matters."
|
||||
|
||||
---
|
||||
|
||||
*Document Version: 1.0*
|
||||
*Created: January 2026*
|
||||
*Author: Leo Miranda / Claude*
|
||||
56
docs/project-lessons-learned/INDEX.md
Normal file
56
docs/project-lessons-learned/INDEX.md
Normal file
@@ -0,0 +1,56 @@
|
||||
# Project Lessons Learned
|
||||
|
||||
This folder contains lessons learned from sprints and development work. These lessons help prevent repeating mistakes and capture valuable insights.
|
||||
|
||||
**Note:** This is a temporary local backup while Wiki.js integration is being configured. Once Wiki.js is ready, lessons will be migrated there for better searchability.
|
||||
|
||||
---
|
||||
|
||||
## Lessons Index
|
||||
|
||||
| Date | Sprint/Phase | Title | Tags |
|
||||
|------|--------------|-------|------|
|
||||
| 2026-02-01 | Sprint 10 | [Formspree Integration with Dash Callbacks](./sprint-10-formspree-dash-integration.md) | formspree, dash, callbacks, forms, spam-protection, honeypot, ajax |
|
||||
| 2026-01-17 | Sprint 9 | [Gitea Labels API Requires Org Context](./sprint-9-gitea-labels-user-repos.md) | gitea, mcp, api, labels, projman, configuration |
|
||||
| 2026-01-17 | Sprint 9 | [Always Read CLAUDE.md Before Asking Questions](./sprint-9-read-claude-md-first.md) | projman, claude-code, context, documentation, workflow |
|
||||
| 2026-01-17 | Sprint 9-10 | [Graceful Error Handling in Service Layers](./sprint-9-10-graceful-error-handling.md) | python, postgresql, error-handling, dash, graceful-degradation, arm64 |
|
||||
| 2026-01-17 | Sprint 9-10 | [Modular Callback Structure](./sprint-9-10-modular-callback-structure.md) | dash, callbacks, architecture, python, code-organization |
|
||||
| 2026-01-17 | Sprint 9-10 | [Figure Factory Pattern](./sprint-9-10-figure-factory-pattern.md) | plotly, dash, design-patterns, python, visualization |
|
||||
| 2026-01-16 | Phase 4 | [dbt Test Syntax Deprecation](./phase-4-dbt-test-syntax.md) | dbt, testing, yaml, deprecation |
|
||||
|
||||
---
|
||||
|
||||
## How to Use
|
||||
|
||||
### When Starting a Sprint
|
||||
1. Review relevant lessons in this folder before implementation
|
||||
2. Search by tags or keywords to find applicable insights
|
||||
3. Apply prevention strategies from past lessons
|
||||
|
||||
### When Closing a Sprint
|
||||
1. Document any significant lessons learned
|
||||
2. Use the template below
|
||||
3. Add entry to the index table above
|
||||
|
||||
---
|
||||
|
||||
## Lesson Template
|
||||
|
||||
```markdown
|
||||
# [Sprint/Phase] - [Lesson Title]
|
||||
|
||||
## Context
|
||||
[What were you trying to do?]
|
||||
|
||||
## Problem
|
||||
[What went wrong or what insight emerged?]
|
||||
|
||||
## Solution
|
||||
[How did you solve it?]
|
||||
|
||||
## Prevention
|
||||
[How can this be avoided in future sprints?]
|
||||
|
||||
## Tags
|
||||
[Comma-separated tags for search]
|
||||
```
|
||||
38
docs/project-lessons-learned/phase-4-dbt-test-syntax.md
Normal file
38
docs/project-lessons-learned/phase-4-dbt-test-syntax.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Phase 4 - dbt Test Syntax Deprecation
|
||||
|
||||
## Context
|
||||
Implementing dbt mart models with `accepted_values` tests for tier columns (safety_tier, income_quintile, amenity_tier) that should only contain values 1-5.
|
||||
|
||||
## Problem
|
||||
dbt 1.9+ introduced a deprecation warning for generic test arguments. The old syntax:
|
||||
|
||||
```yaml
|
||||
tests:
|
||||
- accepted_values:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
```
|
||||
|
||||
Produces deprecation warnings:
|
||||
```
|
||||
MissingArgumentsPropertyInGenericTestDeprecation: Arguments to generic tests should be nested under the `arguments` property.
|
||||
```
|
||||
|
||||
## Solution
|
||||
Nest test arguments under the `arguments` property:
|
||||
|
||||
```yaml
|
||||
tests:
|
||||
- accepted_values:
|
||||
arguments:
|
||||
values: [1, 2, 3, 4, 5]
|
||||
```
|
||||
|
||||
This applies to all generic tests with arguments, not just `accepted_values`.
|
||||
|
||||
## Prevention
|
||||
- When writing dbt schema YAML files, always use the `arguments:` nesting for generic tests
|
||||
- Run `dbt parse --no-partial-parse` to catch all deprecation warnings before they become errors
|
||||
- Check dbt changelog when upgrading versions for breaking changes to test syntax
|
||||
|
||||
## Tags
|
||||
dbt, testing, yaml, deprecation, syntax, schema
|
||||
@@ -0,0 +1,70 @@
|
||||
# Sprint 10 - Formspree Integration with Dash Callbacks
|
||||
|
||||
## Context
|
||||
Implementing a contact form on a Dash portfolio site that submits to Formspree, a third-party form handling service.
|
||||
|
||||
## Insights
|
||||
|
||||
### Formspree AJAX Submission
|
||||
Formspree supports AJAX submissions (no page redirect) when you:
|
||||
1. POST with `Content-Type: application/json`
|
||||
2. Include `Accept: application/json` header
|
||||
3. Send form data as JSON body
|
||||
|
||||
This returns a JSON response instead of redirecting to a thank-you page, which is ideal for single-page Dash applications.
|
||||
|
||||
### Dash Multi-Output Callbacks for Forms
|
||||
When handling form submission with validation and feedback, use a multi-output callback pattern:
|
||||
|
||||
```python
|
||||
@callback(
|
||||
Output("feedback-container", "children"), # Success/error alert
|
||||
Output("submit-button", "loading"), # Button loading state
|
||||
Output("field-1", "value"), # Clear on success
|
||||
Output("field-2", "value"), # Clear on success
|
||||
Output("field-1", "error"), # Field-level errors
|
||||
Output("field-2", "error"), # Field-level errors
|
||||
Input("submit-button", "n_clicks"),
|
||||
State("field-1", "value"),
|
||||
State("field-2", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
```
|
||||
|
||||
Use `no_update` for outputs you don't want to change (e.g., keep form values on validation error, only clear on success).
|
||||
|
||||
### Honeypot Spam Protection
|
||||
Simple and effective bot protection without CAPTCHA:
|
||||
1. Add a hidden text input field (CSS: `position: absolute; left: -9999px`)
|
||||
2. Set `tabIndex=-1` and `autoComplete="off"` to prevent accidental filling
|
||||
3. In callback, check if honeypot has value - if yes, it's a bot
|
||||
4. For bots: return fake success (don't reveal detection)
|
||||
5. For humans: proceed with real submission
|
||||
|
||||
Formspree also accepts `_gotcha` as a honeypot field name in the JSON payload.
|
||||
|
||||
## Code Pattern
|
||||
|
||||
```python
|
||||
# Honeypot check - bots fill hidden fields
|
||||
if honeypot_value:
|
||||
# Fake success - don't let bots know they were caught
|
||||
return (_create_success_alert(), False, "", "", None, None)
|
||||
|
||||
# Real submission for humans
|
||||
response = requests.post(
|
||||
FORMSPREE_ENDPOINT,
|
||||
json=form_data,
|
||||
headers={"Accept": "application/json", "Content-Type": "application/json"},
|
||||
timeout=10,
|
||||
)
|
||||
```
|
||||
|
||||
## Prevention/Best Practices
|
||||
- Always use `timeout` parameter with `requests.post()` to avoid hanging
|
||||
- Wrap external API calls in try/except for network errors
|
||||
- Return user-friendly error messages, not technical details
|
||||
- Use DMC's `required=True` and `error` props for form validation feedback
|
||||
|
||||
## Tags
|
||||
formspree, dash, callbacks, forms, spam-protection, honeypot, ajax, python, requests, validation
|
||||
@@ -0,0 +1,53 @@
|
||||
# Sprint 9-10 - Figure Factory Pattern for Reusable Charts
|
||||
|
||||
## Context
|
||||
Creating multiple chart types across 5 dashboard tabs, with consistent styling and behavior needed across all visualizations.
|
||||
|
||||
## Problem
|
||||
Without a standardized approach, each callback would create figures inline with:
|
||||
- Duplicated styling code (colors, fonts, backgrounds)
|
||||
- Inconsistent hover templates
|
||||
- Hard-to-maintain figure creation logic
|
||||
- No reuse between tabs
|
||||
|
||||
## Solution
|
||||
Created a `figures/` module with factory functions:
|
||||
|
||||
```
|
||||
figures/
|
||||
├── __init__.py # Exports all factories
|
||||
├── choropleth.py # Map visualizations
|
||||
├── bar_charts.py # ranking_bar, stacked_bar, horizontal_bar
|
||||
├── scatter.py # scatter_figure, bubble_chart
|
||||
├── radar.py # radar_figure, comparison_radar
|
||||
└── demographics.py # age_pyramid, donut_chart
|
||||
```
|
||||
|
||||
Factory pattern benefits:
|
||||
1. **Consistent styling** - dark theme applied once
|
||||
2. **Type-safe interfaces** - clear parameters for each chart type
|
||||
3. **Easy testing** - factories can be unit tested with sample data
|
||||
4. **Reusability** - same factory used across multiple tabs
|
||||
|
||||
Example factory signature:
|
||||
```python
|
||||
def create_ranking_bar(
|
||||
data: list[dict],
|
||||
name_column: str,
|
||||
value_column: str,
|
||||
title: str = "",
|
||||
top_n: int = 5,
|
||||
bottom_n: int = 5,
|
||||
top_color: str = "#4CAF50",
|
||||
bottom_color: str = "#F44336",
|
||||
) -> go.Figure:
|
||||
```
|
||||
|
||||
## Prevention
|
||||
- **Create factories early** - before implementing callbacks
|
||||
- **Design generic interfaces** - factories should work with any data matching the schema
|
||||
- **Apply styling in one place** - use constants for colors, fonts
|
||||
- **Test factories independently** - with synthetic data before integration
|
||||
|
||||
## Tags
|
||||
plotly, dash, design-patterns, python, visualization, reusability, code-organization
|
||||
@@ -0,0 +1,34 @@
|
||||
# Sprint 9-10 - Graceful Error Handling in Service Layers
|
||||
|
||||
## Context
|
||||
Building the Toronto Neighbourhood Dashboard with a service layer that queries PostgreSQL/PostGIS dbt marts to provide data to Dash callbacks.
|
||||
|
||||
## Problem
|
||||
Initial service layer implementation let database connection errors propagate as unhandled exceptions. When the PostGIS Docker container was unavailable (common on ARM64 systems where the x86_64 image fails), the entire dashboard would crash instead of gracefully degrading.
|
||||
|
||||
## Solution
|
||||
Wrapped database queries in try/except blocks to return empty DataFrames/lists/dicts when the database is unavailable:
|
||||
|
||||
```python
|
||||
def _execute_query(sql: str, params: dict | None = None) -> pd.DataFrame:
|
||||
try:
|
||||
engine = get_engine()
|
||||
with engine.connect() as conn:
|
||||
return pd.read_sql(text(sql), conn, params=params)
|
||||
except Exception:
|
||||
return pd.DataFrame()
|
||||
```
|
||||
|
||||
This allows:
|
||||
1. Dashboard to load and display empty states
|
||||
2. Development/testing without running database
|
||||
3. Graceful degradation in production
|
||||
|
||||
## Prevention
|
||||
- **Always design service layers with graceful degradation** - assume external dependencies can fail
|
||||
- **Return empty collections, not exceptions** - let UI components handle empty states
|
||||
- **Test without database** - verify the app doesn't crash when DB is unavailable
|
||||
- **Consider ARM64 compatibility** - PostGIS images may not support all platforms
|
||||
|
||||
## Tags
|
||||
python, postgresql, service-layer, error-handling, dash, graceful-degradation, arm64
|
||||
@@ -0,0 +1,45 @@
|
||||
# Sprint 9-10 - Modular Callback Structure for Multi-Tab Dashboards
|
||||
|
||||
## Context
|
||||
Implementing a 5-tab Toronto Neighbourhood Dashboard with multiple callbacks per tab (map updates, chart updates, KPI updates, selection handling).
|
||||
|
||||
## Problem
|
||||
Initial callback implementation approach would have placed all callbacks in a single file, leading to:
|
||||
- A monolithic file with 500+ lines
|
||||
- Difficult-to-navigate code
|
||||
- Callbacks for different tabs interleaved
|
||||
- Testing difficulties
|
||||
|
||||
## Solution
|
||||
Organized callbacks into three focused modules:
|
||||
|
||||
```
|
||||
callbacks/
|
||||
├── __init__.py # Imports all modules to register callbacks
|
||||
├── map_callbacks.py # Choropleth updates, map click handling
|
||||
├── chart_callbacks.py # Supporting chart updates (scatter, trend, donut)
|
||||
└── selection_callbacks.py # Dropdown population, KPI updates
|
||||
```
|
||||
|
||||
Key patterns:
|
||||
1. **Group by responsibility**, not by tab - all map-related callbacks together
|
||||
2. **Use noqa comments** for imports that register callbacks as side effects
|
||||
3. **Share helper functions** (like `_empty_chart()`) within modules
|
||||
|
||||
```python
|
||||
# callbacks/__init__.py
|
||||
from . import (
|
||||
chart_callbacks, # noqa: F401
|
||||
map_callbacks, # noqa: F401
|
||||
selection_callbacks, # noqa: F401
|
||||
)
|
||||
```
|
||||
|
||||
## Prevention
|
||||
- **Plan callback organization before implementation** - sketch which callbacks go where
|
||||
- **Group by function, not by feature** - keeps related logic together
|
||||
- **Keep modules under 400 lines** - split if exceeding
|
||||
- **Test imports early** - verify callbacks register correctly
|
||||
|
||||
## Tags
|
||||
dash, callbacks, architecture, python, code-organization, maintainability
|
||||
@@ -0,0 +1,29 @@
|
||||
# Sprint 9 - Gitea Labels API Requires Org Context
|
||||
|
||||
## Context
|
||||
Creating Gitea issues with labels via MCP tools during Sprint 9 planning for the personal-portfolio project.
|
||||
|
||||
## Problem
|
||||
When calling `create_issue` with a `labels` parameter, received:
|
||||
```
|
||||
404 Client Error: Not Found for url: https://gitea.hotserv.cloud/api/v1/orgs/lmiranda/labels
|
||||
```
|
||||
|
||||
The API attempted to fetch labels from an **organization** endpoint, but `lmiranda` is a **user account**, not an organization.
|
||||
|
||||
## Solution
|
||||
Created issues without the `labels` parameter and documented intended labels in the issue body instead:
|
||||
```markdown
|
||||
**Labels:** Type/Feature, Priority/Medium, Complexity/Simple, Efforts/XS, Component/Docs, Tech/Python
|
||||
```
|
||||
|
||||
This provides visibility into intended categorization while avoiding the API error.
|
||||
|
||||
## Prevention
|
||||
- When working with user-owned repos (not org repos), avoid using the `labels` parameter in `create_issue`
|
||||
- Document labels in issue body as a workaround
|
||||
- Consider creating a repo-level label set for user repos (Gitea supports this)
|
||||
- Update projman plugin to handle user vs org repos differently
|
||||
|
||||
## Tags
|
||||
gitea, mcp, api, labels, projman, configuration
|
||||
@@ -0,0 +1,30 @@
|
||||
# Sprint 9 - Always Read CLAUDE.md Before Asking Questions
|
||||
|
||||
## Context
|
||||
Starting Sprint 9 planning session with `/projman:sprint-plan` command.
|
||||
|
||||
## Problem
|
||||
Asked the user "what should I do?" when all the necessary context was already documented in CLAUDE.md:
|
||||
- Current sprint number and phase
|
||||
- Implementation plan location
|
||||
- Remaining phases to complete
|
||||
- Project conventions and workflows
|
||||
|
||||
This caused user frustration: "why are you asking what to do? cant you see this yourself"
|
||||
|
||||
## Solution
|
||||
Before asking any questions about what to do:
|
||||
1. Read `CLAUDE.md` in the project root
|
||||
2. Check "Project Status" section for current sprint/phase
|
||||
3. Follow references to implementation plans
|
||||
4. Review "Projman Plugin Workflow" section for expected behavior
|
||||
|
||||
## Prevention
|
||||
- **ALWAYS** read CLAUDE.md at the start of any sprint-related command
|
||||
- Look for "Current Sprint" and "Phase" indicators
|
||||
- Check for implementation plan references in `docs/changes/`
|
||||
- Only ask questions if information is genuinely missing from documentation
|
||||
- The projman plugin expects autonomous behavior based on documented context
|
||||
|
||||
## Tags
|
||||
projman, claude-code, context, documentation, workflow, sprint-planning
|
||||
265
docs/runbooks/adding-dashboard.md
Normal file
265
docs/runbooks/adding-dashboard.md
Normal file
@@ -0,0 +1,265 @@
|
||||
# Runbook: Adding a New Dashboard
|
||||
|
||||
This runbook describes how to add a new data dashboard to the portfolio application.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- [ ] Data sources identified and accessible
|
||||
- [ ] Database schema designed
|
||||
- [ ] Basic Dash/Plotly familiarity
|
||||
|
||||
## Directory Structure
|
||||
|
||||
Create the following structure:
|
||||
|
||||
### Application Code (`portfolio_app/`)
|
||||
|
||||
```
|
||||
portfolio_app/
|
||||
├── pages/
|
||||
│ └── {dashboard_name}/
|
||||
│ ├── dashboard.py # Main layout with tabs
|
||||
│ ├── methodology.py # Data sources and methods page
|
||||
│ ├── tabs/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── overview.py # Overview tab layout
|
||||
│ │ └── ... # Additional tab layouts
|
||||
│ └── callbacks/
|
||||
│ ├── __init__.py
|
||||
│ └── ... # Callback modules
|
||||
├── {dashboard_name}/ # Data logic (outside pages/)
|
||||
│ ├── __init__.py
|
||||
│ ├── parsers/ # API/CSV extraction
|
||||
│ │ └── __init__.py
|
||||
│ ├── loaders/ # Database operations
|
||||
│ │ └── __init__.py
|
||||
│ ├── schemas/ # Pydantic models
|
||||
│ │ └── __init__.py
|
||||
│ └── models/ # SQLAlchemy ORM (schema: raw_{dashboard_name})
|
||||
│ └── __init__.py
|
||||
└── figures/
|
||||
└── {dashboard_name}/ # Figure factories for this dashboard
|
||||
├── __init__.py
|
||||
└── ... # Chart modules
|
||||
```
|
||||
|
||||
### dbt Models (`dbt/models/`)
|
||||
|
||||
```
|
||||
dbt/models/
|
||||
├── staging/
|
||||
│ └── {dashboard_name}/ # Staging models
|
||||
│ ├── _sources.yml # Source definitions (schema: raw_{dashboard_name})
|
||||
│ ├── _staging.yml # Model tests/docs
|
||||
│ └── stg_*.sql # Staging models
|
||||
├── intermediate/
|
||||
│ └── {dashboard_name}/ # Intermediate models
|
||||
│ ├── _intermediate.yml
|
||||
│ └── int_*.sql
|
||||
└── marts/
|
||||
└── {dashboard_name}/ # Mart tables
|
||||
├── _marts.yml
|
||||
└── mart_*.sql
|
||||
```
|
||||
|
||||
### Documentation (`notebooks/`)
|
||||
|
||||
```
|
||||
notebooks/
|
||||
└── {dashboard_name}/ # Domain subdirectories
|
||||
├── overview/
|
||||
├── ...
|
||||
```
|
||||
|
||||
## Step-by-Step Checklist
|
||||
|
||||
### 1. Data Layer
|
||||
|
||||
- [ ] Create Pydantic schemas in `{dashboard_name}/schemas/`
|
||||
- [ ] Create SQLAlchemy models in `{dashboard_name}/models/`
|
||||
- [ ] Create parsers in `{dashboard_name}/parsers/`
|
||||
- [ ] Create loaders in `{dashboard_name}/loaders/`
|
||||
- [ ] Add database migrations if needed
|
||||
|
||||
### 2. Database Schema
|
||||
|
||||
- [ ] Define schema constant in models (e.g., `RAW_FOOTBALL_SCHEMA = "raw_football"`)
|
||||
- [ ] Add `__table_args__ = {"schema": RAW_FOOTBALL_SCHEMA}` to all models
|
||||
- [ ] Update `scripts/db/init_schema.py` to create the new schema
|
||||
|
||||
### 3. dbt Models
|
||||
|
||||
Create dbt models in `dbt/models/`:
|
||||
|
||||
- [ ] `staging/{dashboard_name}/_sources.yml` - Source definitions pointing to `raw_{dashboard_name}` schema
|
||||
- [ ] `staging/{dashboard_name}/stg_{source}__{entity}.sql` - Raw data cleaning
|
||||
- [ ] `intermediate/{dashboard_name}/int_{domain}__{transform}.sql` - Business logic
|
||||
- [ ] `marts/{dashboard_name}/mart_{domain}.sql` - Final analytical tables
|
||||
|
||||
Update `dbt/dbt_project.yml` with new subdirectory config:
|
||||
```yaml
|
||||
models:
|
||||
portfolio:
|
||||
staging:
|
||||
{dashboard_name}:
|
||||
+materialized: view
|
||||
+schema: stg_{dashboard_name}
|
||||
intermediate:
|
||||
{dashboard_name}:
|
||||
+materialized: view
|
||||
+schema: int_{dashboard_name}
|
||||
marts:
|
||||
{dashboard_name}:
|
||||
+materialized: table
|
||||
+schema: mart_{dashboard_name}
|
||||
```
|
||||
|
||||
Follow naming conventions:
|
||||
- Staging: `stg_{source}__{entity}`
|
||||
- Intermediate: `int_{domain}__{transform}`
|
||||
- Marts: `mart_{domain}`
|
||||
|
||||
### 4. Visualization Layer
|
||||
|
||||
- [ ] Create figure factories in `figures/{dashboard_name}/`
|
||||
- [ ] Create `figures/{dashboard_name}/__init__.py` with exports
|
||||
- [ ] Follow the factory pattern: `create_{chart_type}_figure(data, **kwargs)`
|
||||
|
||||
Import pattern:
|
||||
```python
|
||||
from portfolio_app.figures.{dashboard_name} import create_choropleth_figure
|
||||
```
|
||||
|
||||
### 4. Dashboard Pages
|
||||
|
||||
#### Main Dashboard (`pages/{dashboard_name}/dashboard.py`)
|
||||
|
||||
```python
|
||||
import dash
|
||||
from dash import html, dcc
|
||||
import dash_mantine_components as dmc
|
||||
|
||||
dash.register_page(
|
||||
__name__,
|
||||
path="/{dashboard_name}",
|
||||
title="{Dashboard Title}",
|
||||
description="{Description}"
|
||||
)
|
||||
|
||||
def layout():
|
||||
return dmc.Container([
|
||||
# Header
|
||||
dmc.Title("{Dashboard Title}", order=1),
|
||||
|
||||
# Tabs
|
||||
dmc.Tabs([
|
||||
dmc.TabsList([
|
||||
dmc.TabsTab("Overview", value="overview"),
|
||||
# Add more tabs
|
||||
]),
|
||||
dmc.TabsPanel(overview_tab(), value="overview"),
|
||||
# Add more panels
|
||||
], value="overview"),
|
||||
])
|
||||
```
|
||||
|
||||
#### Tab Layouts (`pages/{dashboard_name}/tabs/`)
|
||||
|
||||
- [ ] Create one file per tab
|
||||
- [ ] Export layout function from each
|
||||
|
||||
#### Callbacks (`pages/{dashboard_name}/callbacks/`)
|
||||
|
||||
- [ ] Create callback modules for interactivity
|
||||
- [ ] Import and register in dashboard.py
|
||||
|
||||
### 5. Navigation
|
||||
|
||||
Add to sidebar in `components/sidebar.py`:
|
||||
|
||||
```python
|
||||
dmc.NavLink(
|
||||
label="{Dashboard Name}",
|
||||
href="/{dashboard_name}",
|
||||
icon=DashIconify(icon="..."),
|
||||
)
|
||||
```
|
||||
|
||||
### 6. Documentation
|
||||
|
||||
- [ ] Create methodology page (`pages/{dashboard_name}/methodology.py`)
|
||||
- [ ] Document data sources
|
||||
- [ ] Document transformation logic
|
||||
- [ ] Add notebooks to `notebooks/{dashboard_name}/` if needed
|
||||
|
||||
### 7. Testing
|
||||
|
||||
- [ ] Add unit tests for parsers
|
||||
- [ ] Add unit tests for loaders
|
||||
- [ ] Add integration tests for callbacks
|
||||
- [ ] Run `make test`
|
||||
|
||||
### 8. Final Verification
|
||||
|
||||
- [ ] All pages render without errors
|
||||
- [ ] All callbacks respond correctly
|
||||
- [ ] Data loads successfully
|
||||
- [ ] dbt models run cleanly (`make dbt-run`)
|
||||
- [ ] Linting passes (`make lint`)
|
||||
- [ ] Tests pass (`make test`)
|
||||
|
||||
## Example: Toronto Dashboard
|
||||
|
||||
Reference implementation: `portfolio_app/pages/toronto/`
|
||||
|
||||
Key files:
|
||||
- `dashboard.py` - Main layout with 5 tabs
|
||||
- `tabs/overview.py` - Livability scores, scatter plots
|
||||
- `callbacks/map_callbacks.py` - Choropleth interactions
|
||||
- `toronto/models/dimensions.py` - Dimension tables
|
||||
- `toronto/models/facts.py` - Fact tables
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Figure Factories
|
||||
|
||||
```python
|
||||
# figures/choropleth.py
|
||||
def create_choropleth_figure(
|
||||
gdf: gpd.GeoDataFrame,
|
||||
value_column: str,
|
||||
title: str,
|
||||
**kwargs
|
||||
) -> go.Figure:
|
||||
...
|
||||
```
|
||||
|
||||
### Callbacks
|
||||
|
||||
```python
|
||||
# callbacks/map_callbacks.py
|
||||
@callback(
|
||||
Output("neighbourhood-details", "children"),
|
||||
Input("choropleth-map", "clickData"),
|
||||
)
|
||||
def update_details(click_data):
|
||||
...
|
||||
```
|
||||
|
||||
### Data Loading
|
||||
|
||||
```python
|
||||
# {dashboard_name}/loaders/load.py
|
||||
def load_data(session: Session) -> None:
|
||||
# Parse from source
|
||||
records = parse_source_data()
|
||||
|
||||
# Validate with Pydantic
|
||||
validated = [Schema(**r) for r in records]
|
||||
|
||||
# Load to database
|
||||
for record in validated:
|
||||
session.add(Model(**record.model_dump()))
|
||||
|
||||
session.commit()
|
||||
```
|
||||
232
docs/runbooks/deployment.md
Normal file
232
docs/runbooks/deployment.md
Normal file
@@ -0,0 +1,232 @@
|
||||
# Runbook: Deployment
|
||||
|
||||
This runbook covers deployment procedures for the Analytics Portfolio application.
|
||||
|
||||
## Environments
|
||||
|
||||
| Environment | Branch | Server | URL |
|
||||
|-------------|--------|--------|-----|
|
||||
| Development | `development` | Local | http://localhost:8050 |
|
||||
| Staging | `staging` | Homelab (hotserv) | Internal |
|
||||
| Production | `main` | Bandit Labs VPS | https://leodata.science |
|
||||
|
||||
## CI/CD Pipeline
|
||||
|
||||
### Automatic Deployment
|
||||
|
||||
Deployments are triggered automatically via Gitea Actions:
|
||||
|
||||
1. **Push to `staging`** → Deploys to staging server
|
||||
2. **Push to `main`** → Deploys to production server
|
||||
|
||||
### Workflow Files
|
||||
|
||||
- `.gitea/workflows/ci.yml` - Runs linting and tests on all branches
|
||||
- `.gitea/workflows/deploy-staging.yml` - Staging deployment
|
||||
- `.gitea/workflows/deploy-production.yml` - Production deployment
|
||||
|
||||
### Required Secrets
|
||||
|
||||
Configure these in Gitea repository settings:
|
||||
|
||||
| Secret | Description |
|
||||
|--------|-------------|
|
||||
| `STAGING_HOST` | Staging server hostname/IP |
|
||||
| `STAGING_USER` | SSH username for staging |
|
||||
| `STAGING_SSH_KEY` | Private key for staging SSH |
|
||||
| `PROD_HOST` | Production server hostname/IP |
|
||||
| `PROD_USER` | SSH username for production |
|
||||
| `PROD_SSH_KEY` | Private key for production SSH |
|
||||
|
||||
## Manual Deployment
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- SSH access to target server
|
||||
- Repository cloned at `~/apps/personal-portfolio`
|
||||
- Virtual environment created at `.venv`
|
||||
- Docker and Docker Compose installed
|
||||
- PostgreSQL container running
|
||||
|
||||
### Steps
|
||||
|
||||
```bash
|
||||
# 1. SSH to server
|
||||
ssh user@server
|
||||
|
||||
# 2. Navigate to app directory
|
||||
cd ~/apps/personal-portfolio
|
||||
|
||||
# 3. Pull latest changes
|
||||
git fetch origin {branch}
|
||||
git reset --hard origin/{branch}
|
||||
|
||||
# 4. Activate virtual environment
|
||||
source .venv/bin/activate
|
||||
|
||||
# 5. Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# 6. Run database migrations (if any)
|
||||
# python -m alembic upgrade head
|
||||
|
||||
# 7. Run dbt models
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
# 8. Restart application
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
# 9. Verify health
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
## Rollback Procedure
|
||||
|
||||
### Quick Rollback
|
||||
|
||||
If deployment fails, rollback to previous commit:
|
||||
|
||||
```bash
|
||||
# 1. Find previous working commit
|
||||
git log --oneline -10
|
||||
|
||||
# 2. Reset to that commit
|
||||
git reset --hard {commit_hash}
|
||||
|
||||
# 3. Restart services
|
||||
docker compose down
|
||||
docker compose up -d
|
||||
|
||||
# 4. Verify
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
### Full Rollback (Database)
|
||||
|
||||
If database changes need to be reverted:
|
||||
|
||||
```bash
|
||||
# 1. Stop application
|
||||
docker compose down
|
||||
|
||||
# 2. Restore database backup
|
||||
pg_restore -h localhost -U portfolio -d portfolio backup.dump
|
||||
|
||||
# 3. Revert code
|
||||
git reset --hard {commit_hash}
|
||||
|
||||
# 4. Run dbt at that version
|
||||
cd dbt && dbt run --profiles-dir . && cd ..
|
||||
|
||||
# 5. Restart
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
## Health Checks
|
||||
|
||||
### Application Health
|
||||
|
||||
```bash
|
||||
curl http://localhost:8050/health
|
||||
```
|
||||
|
||||
Expected response:
|
||||
```json
|
||||
{"status": "healthy"}
|
||||
```
|
||||
|
||||
### Database Health
|
||||
|
||||
```bash
|
||||
docker compose exec postgres pg_isready -U portfolio
|
||||
```
|
||||
|
||||
### Container Status
|
||||
|
||||
```bash
|
||||
docker compose ps
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
### View Logs
|
||||
|
||||
```bash
|
||||
# All services
|
||||
make logs
|
||||
|
||||
# Specific service
|
||||
make logs SERVICE=postgres
|
||||
|
||||
# Or directly
|
||||
docker compose logs -f
|
||||
```
|
||||
|
||||
### Check Resource Usage
|
||||
|
||||
```bash
|
||||
docker stats
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Application Won't Start
|
||||
|
||||
1. Check container logs: `docker compose logs app`
|
||||
2. Verify environment variables: `cat .env`
|
||||
3. Check database connectivity: `docker compose exec postgres pg_isready`
|
||||
4. Verify port availability: `lsof -i :8050`
|
||||
|
||||
### Database Connection Errors
|
||||
|
||||
1. Check postgres container: `docker compose ps postgres`
|
||||
2. Verify DATABASE_URL in `.env`
|
||||
3. Check postgres logs: `docker compose logs postgres`
|
||||
4. Test connection: `docker compose exec postgres psql -U portfolio -c '\l'`
|
||||
|
||||
### dbt Failures
|
||||
|
||||
1. Check dbt logs: `cd dbt && dbt debug`
|
||||
2. Verify profiles.yml: `cat dbt/profiles.yml`
|
||||
3. Run with verbose output: `dbt run --debug`
|
||||
|
||||
### Out of Memory
|
||||
|
||||
1. Check memory usage: `free -h`
|
||||
2. Review container limits in docker-compose.yml
|
||||
3. Consider increasing swap or server resources
|
||||
|
||||
## Backup Procedures
|
||||
|
||||
### Database Backup
|
||||
|
||||
```bash
|
||||
# Create backup
|
||||
docker compose exec postgres pg_dump -U portfolio portfolio > backup_$(date +%Y%m%d).sql
|
||||
|
||||
# Compressed backup
|
||||
docker compose exec postgres pg_dump -U portfolio -Fc portfolio > backup_$(date +%Y%m%d).dump
|
||||
```
|
||||
|
||||
### Restore from Backup
|
||||
|
||||
```bash
|
||||
# From SQL file
|
||||
docker compose exec -T postgres psql -U portfolio portfolio < backup.sql
|
||||
|
||||
# From dump file
|
||||
docker compose exec -T postgres pg_restore -U portfolio -d portfolio < backup.dump
|
||||
```
|
||||
|
||||
## Deployment Checklist
|
||||
|
||||
Before deploying to production:
|
||||
|
||||
- [ ] All tests pass (`make test`)
|
||||
- [ ] Linting passes (`make lint`)
|
||||
- [ ] Staging deployment successful
|
||||
- [ ] Manual testing on staging complete
|
||||
- [ ] Database backup taken
|
||||
- [ ] Rollback plan confirmed
|
||||
- [ ] Team notified of deployment window
|
||||
70
notebooks/README.md
Normal file
70
notebooks/README.md
Normal file
@@ -0,0 +1,70 @@
|
||||
# Dashboard Documentation Notebooks
|
||||
|
||||
Documentation notebooks organized by dashboard project. Each notebook documents how data is queried, transformed, and visualized using the figure factory pattern.
|
||||
|
||||
## Directory Structure
|
||||
|
||||
```
|
||||
notebooks/
|
||||
├── README.md # This file
|
||||
└── toronto/ # Toronto Neighbourhood Dashboard
|
||||
├── overview/ # Overview tab visualizations
|
||||
├── housing/ # Housing tab visualizations
|
||||
├── safety/ # Safety tab visualizations
|
||||
├── demographics/ # Demographics tab visualizations
|
||||
└── amenities/ # Amenities tab visualizations
|
||||
```
|
||||
|
||||
## Notebook Template
|
||||
|
||||
Each notebook follows a standard two-section structure:
|
||||
|
||||
### Section 1: Data Reference
|
||||
|
||||
Documents the data pipeline:
|
||||
- **Source Tables**: List of dbt marts/tables used
|
||||
- **SQL Query**: The exact query to fetch data
|
||||
- **Transformation Steps**: Any pandas/python transformations
|
||||
- **Sample Output**: First 10 rows of the result
|
||||
|
||||
### Section 2: Data Visualization
|
||||
|
||||
Documents the figure creation:
|
||||
- **Figure Factory**: Import from `portfolio_app.figures`
|
||||
- **Parameters**: Key configuration options
|
||||
- **Rendered Output**: The actual visualization
|
||||
|
||||
## Available Figure Factories
|
||||
|
||||
| Factory | Module | Use Case |
|
||||
|---------|--------|----------|
|
||||
| `create_choropleth` | `figures.choropleth` | Map visualizations |
|
||||
| `create_ranking_bar` | `figures.bar_charts` | Top/bottom N rankings |
|
||||
| `create_stacked_bar` | `figures.bar_charts` | Category breakdowns |
|
||||
| `create_scatter` | `figures.scatter` | Correlation plots |
|
||||
| `create_radar` | `figures.radar` | Multi-metric comparisons |
|
||||
| `create_age_pyramid` | `figures.demographics` | Age distributions |
|
||||
| `create_time_series` | `figures.time_series` | Trend lines |
|
||||
|
||||
## Usage
|
||||
|
||||
1. Start Jupyter from project root:
|
||||
```bash
|
||||
jupyter notebook notebooks/
|
||||
```
|
||||
|
||||
2. Ensure database is running:
|
||||
```bash
|
||||
make docker-up
|
||||
```
|
||||
|
||||
3. Each notebook is self-contained - run all cells top to bottom.
|
||||
|
||||
## Notebook Naming Convention
|
||||
|
||||
`{metric}_{chart_type}.ipynb`
|
||||
|
||||
Examples:
|
||||
- `livability_choropleth.ipynb`
|
||||
- `crime_trend_line.ipynb`
|
||||
- `age_pyramid.ipynb`
|
||||
0
notebooks/toronto/amenities/.gitkeep
Normal file
0
notebooks/toronto/amenities/.gitkeep
Normal file
182
notebooks/toronto/amenities/amenity_index_choropleth.ipynb
Normal file
182
notebooks/toronto/amenities/amenity_index_choropleth.ipynb
Normal file
@@ -0,0 +1,182 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Index Choropleth Map\n",
|
||||
"\n",
|
||||
"Displays total amenities per 1,000 residents across Toronto's 158 neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | amenity_index, total_amenities_per_1000, amenity_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" total_amenities_per_1000,\n",
|
||||
" amenity_index,\n",
|
||||
" amenity_tier,\n",
|
||||
" parks_per_1000,\n",
|
||||
" schools_per_1000,\n",
|
||||
" transit_per_1000,\n",
|
||||
" total_amenities,\n",
|
||||
" population\n",
|
||||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||||
"ORDER BY total_amenities_per_1000 DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent year\n",
|
||||
"2. Convert geometry to GeoJSON"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"total_amenities_per_1000\", \"amenity_index\", \"amenity_tier\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"total_amenities_per_1000\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" \"parks_per_1000\",\n",
|
||||
" \"schools_per_1000\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"Greens\",\n",
|
||||
" title=\"Toronto Amenities per 1,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Amenity Tier Interpretation\n",
|
||||
"\n",
|
||||
"| Tier | Meaning |\n",
|
||||
"|------|--------|\n",
|
||||
"| 1 | Best served (top 20%) |\n",
|
||||
"| 2-4 | Middle tiers |\n",
|
||||
"| 5 | Underserved (bottom 20%) |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
191
notebooks/toronto/amenities/amenity_radar.ipynb
Normal file
@@ -0,0 +1,191 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amenity Radar Chart\n",
|
||||
"\n",
|
||||
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" parks_index,\n",
|
||||
" schools_index,\n",
|
||||
" transit_index,\n",
|
||||
" amenity_index,\n",
|
||||
" amenity_tier\n",
|
||||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||||
"ORDER BY amenity_index DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
|
||||
"2. Reshape for radar chart format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Select representative neighbourhoods\n",
|
||||
"top_5 = df.head(5)\n",
|
||||
"bottom_5 = df.tail(5)\n",
|
||||
"\n",
|
||||
"# Prepare radar data\n",
|
||||
"categories = [\"Parks\", \"Schools\", \"Transit\"]\n",
|
||||
"index_columns = [\"parks_index\", \"schools_index\", \"transit_index\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" top_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" bottom_5[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"parks_index\",\n",
|
||||
" \"schools_index\",\n",
|
||||
" \"transit_index\",\n",
|
||||
" \"amenity_index\",\n",
|
||||
" ]\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_radar` from `portfolio_app.figures.toronto.radar`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.radar import create_comparison_radar\n",
|
||||
"\n",
|
||||
"# Compare top neighbourhood vs city average (100)\n",
|
||||
"top_hood = top_5.iloc[0]\n",
|
||||
"metrics = [\"parks_index\", \"schools_index\", \"transit_index\"]\n",
|
||||
"\n",
|
||||
"fig = create_comparison_radar(\n",
|
||||
" selected_data=top_hood.to_dict(),\n",
|
||||
" average_data={\"parks_index\": 100, \"schools_index\": 100, \"transit_index\": 100},\n",
|
||||
" metrics=metrics,\n",
|
||||
" selected_name=top_hood[\"neighbourhood_name\"],\n",
|
||||
" average_name=\"City Average\",\n",
|
||||
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Value | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | Below city average |\n",
|
||||
"| = 100 | City average |\n",
|
||||
"| > 100 | Above city average |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
169
notebooks/toronto/amenities/transit_accessibility_bar.ipynb
Normal file
169
notebooks/toronto/amenities/transit_accessibility_bar.ipynb
Normal file
@@ -0,0 +1,169 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Transit Accessibility Bar Chart\n",
|
||||
"\n",
|
||||
"Shows transit stops per 1,000 residents across Toronto neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_amenities` | neighbourhood × year | transit_per_1000, transit_index, transit_count |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" transit_per_1000,\n",
|
||||
" transit_index,\n",
|
||||
" transit_count,\n",
|
||||
" population,\n",
|
||||
" amenity_tier\n",
|
||||
"FROM public_marts.mart_neighbourhood_amenities\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_amenities)\n",
|
||||
" AND transit_per_1000 IS NOT NULL\n",
|
||||
"ORDER BY transit_per_1000 DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Sort by transit accessibility\n",
|
||||
"2. Select top 20 for visualization"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[[\"neighbourhood_name\", \"transit_per_1000\", \"transit_index\", \"transit_count\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"transit_per_1000\",\n",
|
||||
" title=\"Top 20 Neighbourhoods by Transit Accessibility\",\n",
|
||||
" color=\"#00BCD4\",\n",
|
||||
" value_format=\".2f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transit Statistics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"City-wide Transit Statistics:\")\n",
|
||||
"print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n",
|
||||
"print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n",
|
||||
"print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n",
|
||||
"print(f\" Best Access: {df['transit_per_1000'].max():.2f} per 1,000\")\n",
|
||||
"print(f\" Worst Access: {df['transit_per_1000'].min():.2f} per 1,000\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
0
notebooks/toronto/demographics/.gitkeep
Normal file
0
notebooks/toronto/demographics/.gitkeep
Normal file
183
notebooks/toronto/demographics/age_distribution.ipynb
Normal file
183
notebooks/toronto/demographics/age_distribution.ipynb
Normal file
@@ -0,0 +1,183 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Age Distribution Analysis\n",
|
||||
"\n",
|
||||
"Compares median age and age index across Toronto neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_age, age_index, city_avg_age |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" median_age,\n",
|
||||
" age_index,\n",
|
||||
" city_avg_age,\n",
|
||||
" population,\n",
|
||||
" income_quintile,\n",
|
||||
" pct_renter_occupied\n",
|
||||
"FROM public_marts.mart_neighbourhood_demographics\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
|
||||
" AND median_age IS NOT NULL\n",
|
||||
"ORDER BY median_age DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods with age data\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent census year\n",
|
||||
"2. Calculate deviation from city average\n",
|
||||
"3. Classify as younger/older than average"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"city_avg = df[\"city_avg_age\"].iloc[0]\n",
|
||||
"df[\"age_category\"] = df[\"median_age\"].apply(\n",
|
||||
" lambda x: \"Younger\" if x < city_avg else \"Older\"\n",
|
||||
")\n",
|
||||
"df[\"age_deviation\"] = df[\"median_age\"] - city_avg\n",
|
||||
"\n",
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(f\"City Average Age: {city_avg:.1f}\")\n",
|
||||
"print(\"\\nYoungest Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" df.tail(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")\n",
|
||||
"print(\"\\nOldest Neighbourhoods:\")\n",
|
||||
"display(\n",
|
||||
" df.head(5)[[\"neighbourhood_name\", \"median_age\", \"age_index\", \"pct_renter_occupied\"]]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"median_age\",\n",
|
||||
" title=\"Youngest & Oldest Neighbourhoods (Median Age)\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top=\"#FF9800\", # Orange for older\n",
|
||||
" color_bottom=\"#2196F3\", # Blue for younger\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Age vs Income Correlation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Age by income quintile\n",
|
||||
"print(\"Median Age by Income Quintile:\")\n",
|
||||
"df.groupby(\"income_quintile\")[\"median_age\"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
182
notebooks/toronto/demographics/income_choropleth.ipynb
Normal file
182
notebooks/toronto/demographics/income_choropleth.ipynb
Normal file
@@ -0,0 +1,182 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Median Income Choropleth Map\n",
|
||||
"\n",
|
||||
"Displays median household income across Toronto's 158 neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | median_household_income, income_index, income_quintile, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" median_household_income,\n",
|
||||
" income_index,\n",
|
||||
" income_quintile,\n",
|
||||
" population,\n",
|
||||
" unemployment_rate\n",
|
||||
"FROM public_marts.mart_neighbourhood_demographics\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
|
||||
"ORDER BY median_household_income DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent census year\n",
|
||||
"2. Convert geometry to GeoJSON\n",
|
||||
"3. Scale income to thousands for readability"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\"neighbourhood_name\", \"median_household_income\", \"income_index\", \"income_quintile\"]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"median_household_income\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"income_index\", \"income_quintile\"],\n",
|
||||
" color_scale=\"Viridis\",\n",
|
||||
" title=\"Toronto Median Household Income by Neighbourhood\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Income Quintile Distribution"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.groupby(\"income_quintile\")[\"median_household_income\"].agg(\n",
|
||||
" [\"count\", \"mean\", \"min\", \"max\"]\n",
|
||||
").round(0)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
169
notebooks/toronto/demographics/population_density_bar.ipynb
Normal file
169
notebooks/toronto/demographics/population_density_bar.ipynb
Normal file
@@ -0,0 +1,169 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Population Density Bar Chart\n",
|
||||
"\n",
|
||||
"Shows population density (people per sq km) across Toronto neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_demographics` | neighbourhood × year | population_density, population, land_area_sqkm |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" population_density,\n",
|
||||
" population,\n",
|
||||
" land_area_sqkm,\n",
|
||||
" median_household_income,\n",
|
||||
" pct_renter_occupied\n",
|
||||
"FROM public_marts.mart_neighbourhood_demographics\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_demographics)\n",
|
||||
" AND population_density IS NOT NULL\n",
|
||||
"ORDER BY population_density DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Sort by population density\n",
|
||||
"2. Select top 20 most dense neighbourhoods"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = df.head(20).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[[\"neighbourhood_name\", \"population_density\", \"population\", \"land_area_sqkm\"]].head(\n",
|
||||
" 10\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_horizontal_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_horizontal_bar\n",
|
||||
"\n",
|
||||
"fig = create_horizontal_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"population_density\",\n",
|
||||
" title=\"Top 20 Most Dense Neighbourhoods\",\n",
|
||||
" color=\"#9C27B0\",\n",
|
||||
" value_format=\",.0f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Density Statistics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"City-wide Statistics:\")\n",
|
||||
"print(f\" Total Population: {df['population'].sum():,.0f}\")\n",
|
||||
"print(f\" Total Area: {df['land_area_sqkm'].sum():,.1f} sq km\")\n",
|
||||
"print(f\" Average Density: {df['population_density'].mean():,.0f} per sq km\")\n",
|
||||
"print(f\" Max Density: {df['population_density'].max():,.0f} per sq km\")\n",
|
||||
"print(f\" Min Density: {df['population_density'].min():,.0f} per sq km\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
187
notebooks/toronto/housing/affordability_choropleth.ipynb
Normal file
187
notebooks/toronto/housing/affordability_choropleth.ipynb
Normal file
@@ -0,0 +1,187 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Affordability Index Choropleth Map\n",
|
||||
"\n",
|
||||
"Displays housing affordability across Toronto's 158 neighbourhoods. Index of 100 = city average."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | affordability_index, rent_to_income_pct, avg_rent_2bed, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" affordability_index,\n",
|
||||
" rent_to_income_pct,\n",
|
||||
" avg_rent_2bed,\n",
|
||||
" median_household_income,\n",
|
||||
" is_affordable\n",
|
||||
"FROM public_marts.mart_neighbourhood_housing\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
|
||||
"ORDER BY affordability_index ASC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent year\n",
|
||||
"2. Convert geometry to GeoJSON\n",
|
||||
"3. Lower index = more affordable (inverted for visualization clarity)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"affordability_index\",\n",
|
||||
" \"rent_to_income_pct\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"is_affordable\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'affordability_index'\n",
|
||||
"- `color_scale`: 'RdYlGn_r' (reversed: green=affordable, red=expensive)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"affordability_index\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"rent_to_income_pct\", \"avg_rent_2bed\"],\n",
|
||||
" color_scale=\"RdYlGn_r\", # Reversed: lower index (affordable) = green\n",
|
||||
" title=\"Toronto Housing Affordability Index\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Index Interpretation\n",
|
||||
"\n",
|
||||
"| Index | Meaning |\n",
|
||||
"|-------|--------|\n",
|
||||
"| < 100 | More affordable than city average |\n",
|
||||
"| = 100 | City average affordability |\n",
|
||||
"| > 100 | Less affordable than city average |\n",
|
||||
"\n",
|
||||
"Affordability calculated as: `rent_to_income_pct / city_avg_rent_to_income * 100`"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
200
notebooks/toronto/housing/rent_trend_line.ipynb
Normal file
200
notebooks/toronto/housing/rent_trend_line.ipynb
Normal file
@@ -0,0 +1,200 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Rent Trend Line Chart\n",
|
||||
"\n",
|
||||
"Shows 5-year rental price trends across Toronto neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | year, avg_rent_2bed, rent_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"# City-wide average rent by year\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" year,\n",
|
||||
" AVG(avg_rent_bachelor) as avg_rent_bachelor,\n",
|
||||
" AVG(avg_rent_1bed) as avg_rent_1bed,\n",
|
||||
" AVG(avg_rent_2bed) as avg_rent_2bed,\n",
|
||||
" AVG(avg_rent_3bed) as avg_rent_3bed,\n",
|
||||
" AVG(rent_yoy_change_pct) as avg_yoy_change\n",
|
||||
"FROM public_marts.mart_neighbourhood_housing\n",
|
||||
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_housing)\n",
|
||||
"GROUP BY year\n",
|
||||
"ORDER BY year\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} years of rent data\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Aggregate rent by year (city-wide average)\n",
|
||||
"2. Convert year to datetime for proper x-axis\n",
|
||||
"3. Reshape for multi-line chart by bedroom type"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create date column from year\n",
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line chart\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_rent_bachelor\", \"avg_rent_1bed\", \"avg_rent_2bed\", \"avg_rent_3bed\"],\n",
|
||||
" var_name=\"bedroom_type\",\n",
|
||||
" value_name=\"avg_rent\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted[\"bedroom_type\"] = df_melted[\"bedroom_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_rent_bachelor\": \"Bachelor\",\n",
|
||||
" \"avg_rent_1bed\": \"1 Bedroom\",\n",
|
||||
" \"avg_rent_2bed\": \"2 Bedroom\",\n",
|
||||
" \"avg_rent_3bed\": \"3 Bedroom\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"year\",\n",
|
||||
" \"avg_rent_bachelor\",\n",
|
||||
" \"avg_rent_1bed\",\n",
|
||||
" \"avg_rent_2bed\",\n",
|
||||
" \"avg_rent_3bed\",\n",
|
||||
" \"avg_yoy_change\",\n",
|
||||
" ]\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_price_time_series` from `portfolio_app.figures.toronto.time_series`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `date_column`: 'date'\n",
|
||||
"- `price_column`: 'avg_rent'\n",
|
||||
"- `group_column`: 'bedroom_type' (for multi-line)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"avg_rent\",\n",
|
||||
" group_column=\"bedroom_type\",\n",
|
||||
" title=\"Toronto Average Rent Trend (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### YoY Change Analysis"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Show year-over-year changes\n",
|
||||
"print(\"Year-over-Year Rent Change (%)\")\n",
|
||||
"df[[\"year\", \"avg_yoy_change\"]].dropna()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
202
notebooks/toronto/housing/tenure_breakdown_bar.ipynb
Normal file
202
notebooks/toronto/housing/tenure_breakdown_bar.ipynb
Normal file
@@ -0,0 +1,202 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Housing Tenure Breakdown Bar Chart\n",
|
||||
"\n",
|
||||
"Shows the distribution of owner-occupied vs renter-occupied dwellings across neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_housing` | neighbourhood × year | pct_owner_occupied, pct_renter_occupied, income_quintile |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" pct_owner_occupied,\n",
|
||||
" pct_renter_occupied,\n",
|
||||
" income_quintile,\n",
|
||||
" total_rental_units,\n",
|
||||
" average_dwelling_value\n",
|
||||
"FROM public_marts.mart_neighbourhood_housing\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_housing)\n",
|
||||
" AND pct_owner_occupied IS NOT NULL\n",
|
||||
"ORDER BY pct_renter_occupied DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods with tenure data\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent year with tenure data\n",
|
||||
"2. Melt owner/renter columns for stacked bar\n",
|
||||
"3. Sort by renter percentage (highest first)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Prepare for stacked bar\n",
|
||||
"df_stacked = df.melt(\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"income_quintile\"],\n",
|
||||
" value_vars=[\"pct_owner_occupied\", \"pct_renter_occupied\"],\n",
|
||||
" var_name=\"tenure_type\",\n",
|
||||
" value_name=\"percentage\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_stacked[\"tenure_type\"] = df_stacked[\"tenure_type\"].map(\n",
|
||||
" {\"pct_owner_occupied\": \"Owner\", \"pct_renter_occupied\": \"Renter\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_stacked.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Highest Renter Neighbourhoods:\")\n",
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"pct_renter_occupied\",\n",
|
||||
" \"pct_owner_occupied\",\n",
|
||||
" \"income_quintile\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'neighbourhood_name'\n",
|
||||
"- `value_column`: 'percentage'\n",
|
||||
"- `category_column`: 'tenure_type'\n",
|
||||
"- `show_percentages`: True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"# Show top 20 by renter percentage\n",
|
||||
"top_20_names = df.head(20)[\"neighbourhood_name\"].tolist()\n",
|
||||
"data_filtered = [d for d in data if d[\"neighbourhood_name\"] in top_20_names]\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data_filtered,\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"percentage\",\n",
|
||||
" category_column=\"tenure_type\",\n",
|
||||
" title=\"Housing Tenure Mix - Top 20 Renter Neighbourhoods\",\n",
|
||||
" color_map={\"Owner\": \"#4CAF50\", \"Renter\": \"#2196F3\"},\n",
|
||||
" show_percentages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### City-Wide Distribution"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# City-wide averages\n",
|
||||
"print(f\"City Average Owner-Occupied: {df['pct_owner_occupied'].mean():.1f}%\")\n",
|
||||
"print(f\"City Average Renter-Occupied: {df['pct_renter_occupied'].mean():.1f}%\")\n",
|
||||
"\n",
|
||||
"# By income quintile\n",
|
||||
"print(\"\\nTenure by Income Quintile:\")\n",
|
||||
"df.groupby(\"income_quintile\")[\n",
|
||||
" [\"pct_owner_occupied\", \"pct_renter_occupied\"]\n",
|
||||
"].mean().round(1)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
196
notebooks/toronto/overview/income_safety_scatter.ipynb
Normal file
196
notebooks/toronto/overview/income_safety_scatter.ipynb
Normal file
@@ -0,0 +1,196 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Income vs Safety Scatter Plot\n",
|
||||
"\n",
|
||||
"Explores the correlation between median household income and safety score across Toronto neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, median_household_income, safety_score, population |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" median_household_income,\n",
|
||||
" safety_score,\n",
|
||||
" population,\n",
|
||||
" livability_score,\n",
|
||||
" crime_rate_per_100k\n",
|
||||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||||
" AND median_household_income IS NOT NULL\n",
|
||||
" AND safety_score IS NOT NULL\n",
|
||||
"ORDER BY median_household_income DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods with income and safety data\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter out null values for income and safety\n",
|
||||
"2. Optionally scale income to thousands for readability\n",
|
||||
"3. Pass to scatter figure factory with optional trendline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Scale income to thousands for better axis readability\n",
|
||||
"df[\"income_thousands\"] = df[\"median_household_income\"] / 1000\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"median_household_income\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_scatter_figure` from `portfolio_app.figures.toronto.scatter`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `x_column`: 'income_thousands' (median household income in $K)\n",
|
||||
"- `y_column`: 'safety_score' (0-100 percentile rank)\n",
|
||||
"- `name_column`: 'neighbourhood_name' (hover label)\n",
|
||||
"- `size_column`: 'population' (optional, bubble size)\n",
|
||||
"- `trendline`: True (adds OLS regression line)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.scatter import create_scatter_figure\n",
|
||||
"\n",
|
||||
"fig = create_scatter_figure(\n",
|
||||
" data=data,\n",
|
||||
" x_column=\"income_thousands\",\n",
|
||||
" y_column=\"safety_score\",\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" size_column=\"population\",\n",
|
||||
" title=\"Income vs Safety by Neighbourhood\",\n",
|
||||
" x_title=\"Median Household Income ($K)\",\n",
|
||||
" y_title=\"Safety Score (0-100)\",\n",
|
||||
" trendline=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Interpretation\n",
|
||||
"\n",
|
||||
"This scatter plot reveals the relationship between income and safety:\n",
|
||||
"\n",
|
||||
"- **Positive correlation**: Higher income neighbourhoods tend to have higher safety scores\n",
|
||||
"- **Bubble size**: Represents population (larger = more people)\n",
|
||||
"- **Trendline**: Orange dashed line shows the overall trend\n",
|
||||
"- **Outliers**: Neighbourhoods far from the trendline are interesting cases\n",
|
||||
" - Above line: Safer than income would predict\n",
|
||||
" - Below line: Less safe than income would predict"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Calculate correlation coefficient\n",
|
||||
"correlation = df[\"median_household_income\"].corr(df[\"safety_score\"])\n",
|
||||
"print(f\"Correlation coefficient (Income vs Safety): {correlation:.3f}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
201
notebooks/toronto/overview/livability_choropleth.ipynb
Normal file
201
notebooks/toronto/overview/livability_choropleth.ipynb
Normal file
@@ -0,0 +1,201 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Livability Score Choropleth Map\n",
|
||||
"\n",
|
||||
"Displays neighbourhood livability scores on an interactive map of Toronto's 158 neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | livability_score, safety_score, affordability_score, amenity_score, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" livability_score,\n",
|
||||
" safety_score,\n",
|
||||
" affordability_score,\n",
|
||||
" amenity_score,\n",
|
||||
" population,\n",
|
||||
" median_household_income\n",
|
||||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||||
"ORDER BY livability_score DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent year of data\n",
|
||||
"2. Extract GeoJSON from PostGIS geometry column\n",
|
||||
"3. Pass to choropleth figure factory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Transform geometry to GeoJSON\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"# Convert WKB geometry to GeoDataFrame\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Create GeoJSON FeatureCollection\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"\n",
|
||||
"# Prepare data for figure factory\n",
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"livability_score\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `geojson`: GeoJSON FeatureCollection with neighbourhood boundaries\n",
|
||||
"- `data`: List of dicts with neighbourhood_id and scores\n",
|
||||
"- `location_key`: 'neighbourhood_id'\n",
|
||||
"- `color_column`: 'livability_score' (or safety_score, etc.)\n",
|
||||
"- `color_scale`: 'RdYlGn' (red=low, yellow=mid, green=high)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"livability_score\",\n",
|
||||
" hover_data=[\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"safety_score\",\n",
|
||||
" \"affordability_score\",\n",
|
||||
" \"amenity_score\",\n",
|
||||
" ],\n",
|
||||
" color_scale=\"RdYlGn\",\n",
|
||||
" title=\"Toronto Neighbourhood Livability Score\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Score Components\n",
|
||||
"\n",
|
||||
"The livability score is a weighted composite:\n",
|
||||
"\n",
|
||||
"| Component | Weight | Source |\n",
|
||||
"|-----------|--------|--------|\n",
|
||||
"| Safety | 30% | Inverse of crime rate per 100K |\n",
|
||||
"| Affordability | 40% | Inverse of rent-to-income ratio |\n",
|
||||
"| Amenities | 30% | Amenities per 1,000 residents |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
173
notebooks/toronto/overview/top_bottom_10_bar.ipynb
Normal file
173
notebooks/toronto/overview/top_bottom_10_bar.ipynb
Normal file
@@ -0,0 +1,173 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Top & Bottom 10 Neighbourhoods Bar Chart\n",
|
||||
"\n",
|
||||
"Horizontal bar chart showing the highest and lowest scoring neighbourhoods by livability."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" livability_score,\n",
|
||||
" safety_score,\n",
|
||||
" affordability_score,\n",
|
||||
" amenity_score\n",
|
||||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||||
" AND livability_score IS NOT NULL\n",
|
||||
"ORDER BY livability_score DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods with scores\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Sort by livability_score descending\n",
|
||||
"2. Take top 10 and bottom 10\n",
|
||||
"3. Pass to ranking bar figure factory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The figure factory handles top/bottom selection internally\n",
|
||||
"# Just prepare as list of dicts\n",
|
||||
"data = df.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Top 5:\")\n",
|
||||
"display(df.head(5))\n",
|
||||
"print(\"\\nBottom 5:\")\n",
|
||||
"display(df.tail(5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_ranking_bar` from `portfolio_app.figures.toronto.bar_charts`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `data`: List of dicts with all neighbourhoods\n",
|
||||
"- `name_column`: 'neighbourhood_name'\n",
|
||||
"- `value_column`: 'livability_score'\n",
|
||||
"- `top_n`: 10 (green bars)\n",
|
||||
"- `bottom_n`: 10 (red bars)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_ranking_bar\n",
|
||||
"\n",
|
||||
"fig = create_ranking_bar(\n",
|
||||
" data=data,\n",
|
||||
" name_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"livability_score\",\n",
|
||||
" title=\"Top & Bottom 10 Neighbourhoods by Livability\",\n",
|
||||
" top_n=10,\n",
|
||||
" bottom_n=10,\n",
|
||||
" color_top=\"#4CAF50\", # Green for top performers\n",
|
||||
" color_bottom=\"#F44336\", # Red for bottom performers\n",
|
||||
" value_format=\".1f\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Interpretation\n",
|
||||
"\n",
|
||||
"- **Green bars**: Highest livability scores (best combination of safety, affordability, and amenities)\n",
|
||||
"- **Red bars**: Lowest livability scores (areas that may need targeted investment)\n",
|
||||
"\n",
|
||||
"The ranking bar chart provides quick context for which neighbourhoods stand out at either extreme."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
0
notebooks/toronto/safety/.gitkeep
Normal file
0
notebooks/toronto/safety/.gitkeep
Normal file
200
notebooks/toronto/safety/crime_breakdown_bar.ipynb
Normal file
200
notebooks/toronto/safety/crime_breakdown_bar.ipynb
Normal file
@@ -0,0 +1,200 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Crime Type Breakdown Bar Chart\n",
|
||||
"\n",
|
||||
"Stacked bar chart showing crime composition by Major Crime Indicator (MCI) categories."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | assault_count, auto_theft_count, break_enter_count, robbery_count, etc. |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_name,\n",
|
||||
" assault_count,\n",
|
||||
" auto_theft_count,\n",
|
||||
" break_enter_count,\n",
|
||||
" robbery_count,\n",
|
||||
" theft_over_count,\n",
|
||||
" homicide_count,\n",
|
||||
" total_incidents,\n",
|
||||
" crime_rate_per_100k\n",
|
||||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
|
||||
"ORDER BY total_incidents DESC\n",
|
||||
"LIMIT 15\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded top {len(df)} neighbourhoods by crime volume\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Select top 15 neighbourhoods by total incidents\n",
|
||||
"2. Melt crime type columns into rows\n",
|
||||
"3. Pass to stacked bar figure factory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=[\"neighbourhood_name\", \"total_incidents\"],\n",
|
||||
" value_vars=[\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"robbery_count\",\n",
|
||||
" \"theft_over_count\",\n",
|
||||
" \"homicide_count\",\n",
|
||||
" ],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"count\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Clean labels\n",
|
||||
"df_melted[\"crime_type\"] = (\n",
|
||||
" df_melted[\"crime_type\"].str.replace(\"_count\", \"\").str.replace(\"_\", \" \").str.title()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"assault_count\",\n",
|
||||
" \"auto_theft_count\",\n",
|
||||
" \"break_enter_count\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_stacked_bar` from `portfolio_app.figures.toronto.bar_charts`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.bar_charts import create_stacked_bar\n",
|
||||
"\n",
|
||||
"fig = create_stacked_bar(\n",
|
||||
" data=data,\n",
|
||||
" x_column=\"neighbourhood_name\",\n",
|
||||
" value_column=\"count\",\n",
|
||||
" category_column=\"crime_type\",\n",
|
||||
" title=\"Crime Type Breakdown - Top 15 Neighbourhoods\",\n",
|
||||
" color_map={\n",
|
||||
" \"Assault\": \"#d62728\",\n",
|
||||
" \"Auto Theft\": \"#ff7f0e\",\n",
|
||||
" \"Break Enter\": \"#9467bd\",\n",
|
||||
" \"Robbery\": \"#8c564b\",\n",
|
||||
" \"Theft Over\": \"#e377c2\",\n",
|
||||
" \"Homicide\": \"#1f77b4\",\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### MCI Categories\n",
|
||||
"\n",
|
||||
"| Category | Description |\n",
|
||||
"|----------|------------|\n",
|
||||
"| Assault | Physical attacks |\n",
|
||||
"| Auto Theft | Vehicle theft |\n",
|
||||
"| Break & Enter | Burglary |\n",
|
||||
"| Robbery | Theft with force/threat |\n",
|
||||
"| Theft Over | Theft > $5,000 |\n",
|
||||
"| Homicide | Murder/manslaughter |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
185
notebooks/toronto/safety/crime_rate_choropleth.ipynb
Normal file
185
notebooks/toronto/safety/crime_rate_choropleth.ipynb
Normal file
@@ -0,0 +1,185 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Crime Rate Choropleth Map\n",
|
||||
"\n",
|
||||
"Displays crime rates per 100,000 population across Toronto's 158 neighbourhoods."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | crime_rate_per_100k, crime_index, safety_tier, geometry |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" neighbourhood_id,\n",
|
||||
" neighbourhood_name,\n",
|
||||
" geometry,\n",
|
||||
" year,\n",
|
||||
" crime_rate_per_100k,\n",
|
||||
" crime_index,\n",
|
||||
" safety_tier,\n",
|
||||
" total_incidents,\n",
|
||||
" population\n",
|
||||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_safety)\n",
|
||||
"ORDER BY crime_rate_per_100k DESC\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Filter to most recent year\n",
|
||||
"2. Convert geometry to GeoJSON\n",
|
||||
"3. Use reversed color scale (green=low crime, red=high crime)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import geopandas as gpd\n",
|
||||
"\n",
|
||||
"gdf = gpd.GeoDataFrame(\n",
|
||||
" df, geometry=gpd.GeoSeries.from_wkb(df[\"geometry\"]), crs=\"EPSG:4326\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"geojson = json.loads(gdf.to_json())\n",
|
||||
"data = df.drop(columns=[\"geometry\"]).to_dict(\"records\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\n",
|
||||
" [\n",
|
||||
" \"neighbourhood_name\",\n",
|
||||
" \"crime_rate_per_100k\",\n",
|
||||
" \"crime_index\",\n",
|
||||
" \"safety_tier\",\n",
|
||||
" \"total_incidents\",\n",
|
||||
" ]\n",
|
||||
"].head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_choropleth_figure` from `portfolio_app.figures.toronto.choropleth`.\n",
|
||||
"\n",
|
||||
"**Key Parameters:**\n",
|
||||
"- `color_column`: 'crime_rate_per_100k'\n",
|
||||
"- `color_scale`: 'RdYlGn_r' (red=high crime, green=low crime)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.choropleth import create_choropleth_figure\n",
|
||||
"\n",
|
||||
"fig = create_choropleth_figure(\n",
|
||||
" geojson=geojson,\n",
|
||||
" data=data,\n",
|
||||
" location_key=\"neighbourhood_id\",\n",
|
||||
" color_column=\"crime_rate_per_100k\",\n",
|
||||
" hover_data=[\"neighbourhood_name\", \"crime_index\", \"total_incidents\"],\n",
|
||||
" color_scale=\"RdYlGn_r\",\n",
|
||||
" title=\"Toronto Crime Rate per 100,000 Population\",\n",
|
||||
" zoom=10,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Safety Tier Interpretation\n",
|
||||
"\n",
|
||||
"| Tier | Meaning |\n",
|
||||
"|------|--------|\n",
|
||||
"| 1 | Highest crime (top 20%) |\n",
|
||||
"| 2-4 | Middle tiers |\n",
|
||||
"| 5 | Lowest crime (bottom 20%) |"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
198
notebooks/toronto/safety/crime_trend_line.ipynb
Normal file
198
notebooks/toronto/safety/crime_trend_line.ipynb
Normal file
@@ -0,0 +1,198 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Crime Trend Line Chart\n",
|
||||
"\n",
|
||||
"Shows 5-year crime rate trends across Toronto."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Data Reference\n",
|
||||
"\n",
|
||||
"### Source Tables\n",
|
||||
"\n",
|
||||
"| Table | Grain | Key Columns |\n",
|
||||
"|-------|-------|-------------|\n",
|
||||
"| `mart_neighbourhood_safety` | neighbourhood × year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||||
"\n",
|
||||
"### SQL Query"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from sqlalchemy import create_engine\n",
|
||||
"\n",
|
||||
"# Load .env from project root\n",
|
||||
"load_dotenv(\"../../.env\")\n",
|
||||
"\n",
|
||||
"engine = create_engine(os.environ[\"DATABASE_URL\"])\n",
|
||||
"\n",
|
||||
"query = \"\"\"\n",
|
||||
"SELECT\n",
|
||||
" year,\n",
|
||||
" AVG(crime_rate_per_100k) as avg_crime_rate,\n",
|
||||
" AVG(assault_rate_per_100k) as avg_assault_rate,\n",
|
||||
" AVG(auto_theft_rate_per_100k) as avg_auto_theft_rate,\n",
|
||||
" AVG(break_enter_rate_per_100k) as avg_break_enter_rate,\n",
|
||||
" SUM(total_incidents) as total_city_incidents,\n",
|
||||
" AVG(crime_yoy_change_pct) as avg_yoy_change\n",
|
||||
"FROM public_marts.mart_neighbourhood_safety\n",
|
||||
"WHERE year >= (SELECT MAX(year) - 5 FROM public_marts.mart_neighbourhood_safety)\n",
|
||||
"GROUP BY year\n",
|
||||
"ORDER BY year\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"df = pd.read_sql(query, engine)\n",
|
||||
"print(f\"Loaded {len(df)} years of crime data\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Transformation Steps\n",
|
||||
"\n",
|
||||
"1. Aggregate by year (city-wide)\n",
|
||||
"2. Convert year to datetime\n",
|
||||
"3. Melt for multi-line by crime type"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\"date\"] = pd.to_datetime(df[\"year\"].astype(str) + \"-01-01\")\n",
|
||||
"\n",
|
||||
"# Melt for multi-line\n",
|
||||
"df_melted = df.melt(\n",
|
||||
" id_vars=[\"year\", \"date\"],\n",
|
||||
" value_vars=[\"avg_assault_rate\", \"avg_auto_theft_rate\", \"avg_break_enter_rate\"],\n",
|
||||
" var_name=\"crime_type\",\n",
|
||||
" value_name=\"rate_per_100k\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"df_melted[\"crime_type\"] = df_melted[\"crime_type\"].map(\n",
|
||||
" {\n",
|
||||
" \"avg_assault_rate\": \"Assault\",\n",
|
||||
" \"avg_auto_theft_rate\": \"Auto Theft\",\n",
|
||||
" \"avg_break_enter_rate\": \"Break & Enter\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Sample Output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[[\"year\", \"avg_crime_rate\", \"total_city_incidents\", \"avg_yoy_change\"]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data Visualization\n",
|
||||
"\n",
|
||||
"### Figure Factory\n",
|
||||
"\n",
|
||||
"Uses `create_price_time_series` (reused for any numeric trend)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"sys.path.insert(0, \"../..\")\n",
|
||||
"\n",
|
||||
"from portfolio_app.figures.toronto.time_series import create_price_time_series\n",
|
||||
"\n",
|
||||
"data = df_melted.to_dict(\"records\")\n",
|
||||
"\n",
|
||||
"fig = create_price_time_series(\n",
|
||||
" data=data,\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"rate_per_100k\",\n",
|
||||
" group_column=\"crime_type\",\n",
|
||||
" title=\"Toronto Crime Trends by Type (5 Years)\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Remove dollar sign formatting since this is rate data\n",
|
||||
"fig.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Overall Trend"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Total crime rate trend\n",
|
||||
"total_data = (\n",
|
||||
" df[[\"date\", \"avg_crime_rate\"]]\n",
|
||||
" .rename(columns={\"avg_crime_rate\": \"total_rate\"})\n",
|
||||
" .to_dict(\"records\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"fig2 = create_price_time_series(\n",
|
||||
" data=total_data,\n",
|
||||
" date_column=\"date\",\n",
|
||||
" price_column=\"total_rate\",\n",
|
||||
" title=\"Toronto Overall Crime Rate Trend\",\n",
|
||||
")\n",
|
||||
"fig2.update_layout(yaxis_tickprefix=\"\", yaxis_title=\"Rate per 100K\")\n",
|
||||
"fig2.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.11.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -1,5 +1,5 @@
|
||||
"""Application-level callbacks for the portfolio app."""
|
||||
|
||||
from . import sidebar, theme
|
||||
from . import contact, sidebar, theme
|
||||
|
||||
__all__ = ["sidebar", "theme"]
|
||||
__all__ = ["contact", "sidebar", "theme"]
|
||||
|
||||
214
portfolio_app/callbacks/contact.py
Normal file
214
portfolio_app/callbacks/contact.py
Normal file
@@ -0,0 +1,214 @@
|
||||
"""Contact form submission callback with Formspree integration."""
|
||||
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
import dash_mantine_components as dmc
|
||||
import requests
|
||||
from dash import Input, Output, State, callback, no_update
|
||||
from dash_iconify import DashIconify
|
||||
|
||||
FORMSPREE_ENDPOINT = "https://formspree.io/f/mqelqzpd"
|
||||
EMAIL_REGEX = re.compile(r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")
|
||||
|
||||
|
||||
def _validate_form(
|
||||
name: str | None, email: str | None, message: str | None
|
||||
) -> str | None:
|
||||
"""Validate form fields and return error message if invalid."""
|
||||
if not name or not name.strip():
|
||||
return "Please enter your name."
|
||||
if not email or not email.strip():
|
||||
return "Please enter your email address."
|
||||
if not EMAIL_REGEX.match(email.strip()):
|
||||
return "Please enter a valid email address."
|
||||
if not message or not message.strip():
|
||||
return "Please enter a message."
|
||||
return None
|
||||
|
||||
|
||||
def _create_success_alert() -> dmc.Alert:
|
||||
"""Create success feedback alert."""
|
||||
return dmc.Alert(
|
||||
"Thank you for your message! I'll get back to you soon.",
|
||||
title="Message Sent",
|
||||
color="green",
|
||||
variant="light",
|
||||
icon=DashIconify(icon="tabler:check", width=20),
|
||||
withCloseButton=True,
|
||||
)
|
||||
|
||||
|
||||
def _create_error_alert(message: str) -> dmc.Alert:
|
||||
"""Create error feedback alert."""
|
||||
return dmc.Alert(
|
||||
message,
|
||||
title="Error",
|
||||
color="red",
|
||||
variant="light",
|
||||
icon=DashIconify(icon="tabler:alert-circle", width=20),
|
||||
withCloseButton=True,
|
||||
)
|
||||
|
||||
|
||||
@callback( # type: ignore[misc]
|
||||
Output("contact-feedback", "children"),
|
||||
Output("contact-submit", "loading"),
|
||||
Output("contact-name", "value"),
|
||||
Output("contact-email", "value"),
|
||||
Output("contact-subject", "value"),
|
||||
Output("contact-message", "value"),
|
||||
Output("contact-name", "error"),
|
||||
Output("contact-email", "error"),
|
||||
Output("contact-message", "error"),
|
||||
Input("contact-submit", "n_clicks"),
|
||||
State("contact-name", "value"),
|
||||
State("contact-email", "value"),
|
||||
State("contact-subject", "value"),
|
||||
State("contact-message", "value"),
|
||||
State("contact-gotcha", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def submit_contact_form(
|
||||
n_clicks: int | None,
|
||||
name: str | None,
|
||||
email: str | None,
|
||||
subject: str | None,
|
||||
message: str | None,
|
||||
gotcha: str | None,
|
||||
) -> tuple[Any, ...]:
|
||||
"""Submit contact form to Formspree.
|
||||
|
||||
Args:
|
||||
n_clicks: Button click count.
|
||||
name: User's name.
|
||||
email: User's email address.
|
||||
subject: Message subject (optional).
|
||||
message: Message content.
|
||||
gotcha: Honeypot field value (should be empty for real users).
|
||||
|
||||
Returns:
|
||||
Tuple of (feedback, loading, name, email, subject, message,
|
||||
name_error, email_error, message_error).
|
||||
"""
|
||||
if not n_clicks:
|
||||
return (no_update,) * 9
|
||||
|
||||
# Check honeypot - if filled, silently "succeed" (it's a bot)
|
||||
if gotcha:
|
||||
return (
|
||||
_create_success_alert(),
|
||||
False,
|
||||
"",
|
||||
"",
|
||||
None,
|
||||
"",
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
# Validate form
|
||||
validation_error = _validate_form(name, email, message)
|
||||
if validation_error:
|
||||
# Determine which field has the error
|
||||
name_error = "Required" if not name or not name.strip() else None
|
||||
email_error = None
|
||||
message_error = "Required" if not message or not message.strip() else None
|
||||
|
||||
if not email or not email.strip():
|
||||
email_error = "Required"
|
||||
elif not EMAIL_REGEX.match(email.strip()):
|
||||
email_error = "Invalid email format"
|
||||
|
||||
return (
|
||||
_create_error_alert(validation_error),
|
||||
False,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
name_error,
|
||||
email_error,
|
||||
message_error,
|
||||
)
|
||||
|
||||
# Prepare form data (validation passed, so name/email/message are not None)
|
||||
assert name is not None
|
||||
assert email is not None
|
||||
assert message is not None
|
||||
form_data = {
|
||||
"name": name.strip(),
|
||||
"email": email.strip(),
|
||||
"subject": subject or "General Inquiry",
|
||||
"message": message.strip(),
|
||||
"_gotcha": "", # Formspree honeypot
|
||||
}
|
||||
|
||||
# Submit to Formspree
|
||||
try:
|
||||
response = requests.post(
|
||||
FORMSPREE_ENDPOINT,
|
||||
json=form_data,
|
||||
headers={
|
||||
"Accept": "application/json",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
timeout=10,
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
# Success - clear form
|
||||
return (
|
||||
_create_success_alert(),
|
||||
False,
|
||||
"",
|
||||
"",
|
||||
None,
|
||||
"",
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
# Formspree returned an error
|
||||
return (
|
||||
_create_error_alert(
|
||||
"Failed to send message. Please try again or use direct contact."
|
||||
),
|
||||
False,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
except requests.exceptions.Timeout:
|
||||
return (
|
||||
_create_error_alert("Request timed out. Please try again."),
|
||||
False,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
except requests.exceptions.RequestException:
|
||||
return (
|
||||
_create_error_alert(
|
||||
"Network error. Please check your connection and try again."
|
||||
),
|
||||
False,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
@@ -28,7 +28,7 @@ def create_metric_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=default_value or (options[0]["value"] if options else None),
|
||||
style={"width": "200px"},
|
||||
w=200,
|
||||
)
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ def create_map_controls(
|
||||
id=f"{id_prefix}-layer-toggle",
|
||||
label="Show Boundaries",
|
||||
checked=True,
|
||||
style={"marginTop": "10px"},
|
||||
mt="sm",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ from typing import Any
|
||||
import dash_mantine_components as dmc
|
||||
from dash import dcc
|
||||
|
||||
from portfolio_app.figures.summary_cards import create_metric_card_figure
|
||||
from portfolio_app.figures.toronto.summary_cards import create_metric_card_figure
|
||||
|
||||
|
||||
class MetricCard:
|
||||
|
||||
@@ -38,7 +38,7 @@ def create_year_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_year),
|
||||
style={"width": "120px"},
|
||||
w=120,
|
||||
)
|
||||
|
||||
|
||||
@@ -83,7 +83,8 @@ def create_time_slider(
|
||||
marks=marks,
|
||||
step=1,
|
||||
minRange=1,
|
||||
style={"marginTop": "20px", "marginBottom": "10px"},
|
||||
mt="md",
|
||||
mb="sm",
|
||||
),
|
||||
],
|
||||
p="md",
|
||||
@@ -131,5 +132,5 @@ def create_month_selector(
|
||||
label=label,
|
||||
data=options,
|
||||
value=str(default_month),
|
||||
style={"width": "140px"},
|
||||
w=140,
|
||||
)
|
||||
|
||||
48
portfolio_app/design/__init__.py
Normal file
48
portfolio_app/design/__init__.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""Design system tokens and utilities."""
|
||||
|
||||
from .tokens import (
|
||||
CHART_PALETTE,
|
||||
COLOR_ACCENT,
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
COLOR_WARNING,
|
||||
GRID_COLOR,
|
||||
GRID_COLOR_DARK,
|
||||
PALETTE_COMPARISON,
|
||||
PALETTE_GENDER,
|
||||
PALETTE_TREND,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
POLICY_COLORS,
|
||||
TEXT_MUTED,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
get_colorbar_defaults,
|
||||
get_default_layout,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Text colors
|
||||
"TEXT_PRIMARY",
|
||||
"TEXT_SECONDARY",
|
||||
"TEXT_MUTED",
|
||||
# Chart backgrounds
|
||||
"GRID_COLOR",
|
||||
"GRID_COLOR_DARK",
|
||||
"PAPER_BG",
|
||||
"PLOT_BG",
|
||||
# Semantic colors
|
||||
"COLOR_POSITIVE",
|
||||
"COLOR_NEGATIVE",
|
||||
"COLOR_WARNING",
|
||||
"COLOR_ACCENT",
|
||||
# Palettes
|
||||
"CHART_PALETTE",
|
||||
"PALETTE_COMPARISON",
|
||||
"PALETTE_GENDER",
|
||||
"PALETTE_TREND",
|
||||
"POLICY_COLORS",
|
||||
# Utility functions
|
||||
"get_default_layout",
|
||||
"get_colorbar_defaults",
|
||||
]
|
||||
162
portfolio_app/design/tokens.py
Normal file
162
portfolio_app/design/tokens.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""Centralized design tokens for consistent styling across the application.
|
||||
|
||||
This module provides a single source of truth for colors, ensuring:
|
||||
- Consistent styling across all Plotly figures and components
|
||||
- Accessibility compliance (WCAG color contrast)
|
||||
- Easy theme updates without hunting through multiple files
|
||||
|
||||
Usage:
|
||||
from portfolio_app.design import TEXT_PRIMARY, CHART_PALETTE
|
||||
fig.update_layout(font_color=TEXT_PRIMARY)
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
# =============================================================================
|
||||
# TEXT COLORS (Dark Theme)
|
||||
# =============================================================================
|
||||
|
||||
TEXT_PRIMARY = "#c9c9c9"
|
||||
"""Primary text color for labels, titles, and body text."""
|
||||
|
||||
TEXT_SECONDARY = "#888888"
|
||||
"""Secondary text color for subtitles, captions, and muted text."""
|
||||
|
||||
TEXT_MUTED = "#666666"
|
||||
"""Muted text color for disabled states and placeholders."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# CHART BACKGROUND & GRID
|
||||
# =============================================================================
|
||||
|
||||
GRID_COLOR = "rgba(128, 128, 128, 0.2)"
|
||||
"""Standard grid line color with transparency."""
|
||||
|
||||
GRID_COLOR_DARK = "rgba(128, 128, 128, 0.3)"
|
||||
"""Darker grid for radar charts and polar plots."""
|
||||
|
||||
PAPER_BG = "rgba(0, 0, 0, 0)"
|
||||
"""Transparent paper background for charts."""
|
||||
|
||||
PLOT_BG = "rgba(0, 0, 0, 0)"
|
||||
"""Transparent plot background for charts."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# SEMANTIC COLORS
|
||||
# =============================================================================
|
||||
|
||||
COLOR_POSITIVE = "#40c057"
|
||||
"""Positive/success indicator (Mantine green-6)."""
|
||||
|
||||
COLOR_NEGATIVE = "#fa5252"
|
||||
"""Negative/error indicator (Mantine red-6)."""
|
||||
|
||||
COLOR_WARNING = "#fab005"
|
||||
"""Warning indicator (Mantine yellow-6)."""
|
||||
|
||||
COLOR_ACCENT = "#228be6"
|
||||
"""Primary accent color (Mantine blue-6)."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# ACCESSIBLE CHART PALETTE
|
||||
# =============================================================================
|
||||
|
||||
# Okabe-Ito palette - optimized for all color vision deficiencies
|
||||
# Reference: https://jfly.uni-koeln.de/color/
|
||||
CHART_PALETTE = [
|
||||
"#0072B2", # Blue (primary data series)
|
||||
"#E69F00", # Orange
|
||||
"#56B4E9", # Sky blue
|
||||
"#009E73", # Teal/green
|
||||
"#F0E442", # Yellow
|
||||
"#D55E00", # Vermillion
|
||||
"#CC79A7", # Pink
|
||||
"#000000", # Black (use sparingly)
|
||||
]
|
||||
"""
|
||||
Accessible categorical palette (Okabe-Ito).
|
||||
|
||||
Distinguishable for deuteranopia, protanopia, and tritanopia.
|
||||
Use indices 0-6 for most charts; index 7 (black) for emphasis only.
|
||||
"""
|
||||
|
||||
# Semantic subsets for specific use cases
|
||||
PALETTE_COMPARISON = [CHART_PALETTE[0], CHART_PALETTE[1]]
|
||||
"""Two-color palette for A/B comparisons."""
|
||||
|
||||
PALETTE_GENDER = {
|
||||
"male": "#56B4E9", # Sky blue
|
||||
"female": "#CC79A7", # Pink
|
||||
}
|
||||
"""Gender-specific colors (accessible contrast)."""
|
||||
|
||||
PALETTE_TREND = {
|
||||
"positive": COLOR_POSITIVE,
|
||||
"negative": COLOR_NEGATIVE,
|
||||
"neutral": TEXT_SECONDARY,
|
||||
}
|
||||
"""Trend indicator colors for sparklines and deltas."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# POLICY/EVENT MARKERS (Time Series)
|
||||
# =============================================================================
|
||||
|
||||
POLICY_COLORS = {
|
||||
"policy_change": "#E69F00", # Orange - policy changes
|
||||
"major_event": "#D55E00", # Vermillion - major events
|
||||
"data_note": "#56B4E9", # Sky blue - data annotations
|
||||
"forecast": "#009E73", # Teal - forecast periods
|
||||
"highlight": "#F0E442", # Yellow - highlighted regions
|
||||
}
|
||||
"""Colors for policy markers and event annotations on time series."""
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# CHART LAYOUT DEFAULTS
|
||||
# =============================================================================
|
||||
|
||||
|
||||
def get_default_layout() -> dict[str, Any]:
|
||||
"""Return default Plotly layout settings with design tokens.
|
||||
|
||||
Returns:
|
||||
dict: Layout configuration for fig.update_layout()
|
||||
|
||||
Example:
|
||||
fig.update_layout(**get_default_layout())
|
||||
"""
|
||||
return {
|
||||
"paper_bgcolor": PAPER_BG,
|
||||
"plot_bgcolor": PLOT_BG,
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
"legend": {"font": {"color": TEXT_PRIMARY}},
|
||||
"xaxis": {
|
||||
"gridcolor": GRID_COLOR,
|
||||
"linecolor": GRID_COLOR,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
},
|
||||
"yaxis": {
|
||||
"gridcolor": GRID_COLOR,
|
||||
"linecolor": GRID_COLOR,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_colorbar_defaults() -> dict[str, Any]:
|
||||
"""Return default colorbar settings with design tokens.
|
||||
|
||||
Returns:
|
||||
dict: Colorbar configuration for choropleth/heatmap traces
|
||||
"""
|
||||
return {
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
"title": {"font": {"color": TEXT_PRIMARY}},
|
||||
}
|
||||
@@ -1,29 +1,15 @@
|
||||
"""Plotly figure factories for data visualization."""
|
||||
"""Plotly figure factories for data visualization.
|
||||
|
||||
from .choropleth import (
|
||||
create_choropleth_figure,
|
||||
create_zone_map,
|
||||
)
|
||||
from .summary_cards import create_metric_card_figure, create_summary_metrics
|
||||
from .time_series import (
|
||||
add_policy_markers,
|
||||
create_market_comparison_chart,
|
||||
create_price_time_series,
|
||||
create_time_series_with_events,
|
||||
create_volume_time_series,
|
||||
)
|
||||
Figure factories are organized by dashboard domain:
|
||||
- toronto/ : Toronto Neighbourhood Dashboard figures
|
||||
|
||||
Usage:
|
||||
from portfolio_app.figures.toronto import create_choropleth_figure
|
||||
from portfolio_app.figures.toronto import create_ranking_bar
|
||||
"""
|
||||
|
||||
from . import toronto
|
||||
|
||||
__all__ = [
|
||||
# Choropleth
|
||||
"create_choropleth_figure",
|
||||
"create_zone_map",
|
||||
# Time series
|
||||
"create_price_time_series",
|
||||
"create_volume_time_series",
|
||||
"create_market_comparison_chart",
|
||||
"create_time_series_with_events",
|
||||
"add_policy_markers",
|
||||
# Summary
|
||||
"create_metric_card_figure",
|
||||
"create_summary_metrics",
|
||||
"toronto",
|
||||
]
|
||||
|
||||
61
portfolio_app/figures/toronto/__init__.py
Normal file
61
portfolio_app/figures/toronto/__init__.py
Normal file
@@ -0,0 +1,61 @@
|
||||
"""Plotly figure factories for Toronto dashboard visualizations."""
|
||||
|
||||
from .bar_charts import (
|
||||
create_horizontal_bar,
|
||||
create_ranking_bar,
|
||||
create_stacked_bar,
|
||||
)
|
||||
from .choropleth import (
|
||||
create_choropleth_figure,
|
||||
create_zone_map,
|
||||
)
|
||||
from .demographics import (
|
||||
create_age_pyramid,
|
||||
create_donut_chart,
|
||||
create_income_distribution,
|
||||
)
|
||||
from .radar import (
|
||||
create_comparison_radar,
|
||||
create_radar_figure,
|
||||
)
|
||||
from .scatter import (
|
||||
create_bubble_chart,
|
||||
create_scatter_figure,
|
||||
)
|
||||
from .summary_cards import create_metric_card_figure, create_summary_metrics
|
||||
from .time_series import (
|
||||
add_policy_markers,
|
||||
create_market_comparison_chart,
|
||||
create_price_time_series,
|
||||
create_time_series_with_events,
|
||||
create_volume_time_series,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Choropleth
|
||||
"create_choropleth_figure",
|
||||
"create_zone_map",
|
||||
# Time series
|
||||
"create_price_time_series",
|
||||
"create_volume_time_series",
|
||||
"create_market_comparison_chart",
|
||||
"create_time_series_with_events",
|
||||
"add_policy_markers",
|
||||
# Summary
|
||||
"create_metric_card_figure",
|
||||
"create_summary_metrics",
|
||||
# Bar charts
|
||||
"create_ranking_bar",
|
||||
"create_stacked_bar",
|
||||
"create_horizontal_bar",
|
||||
# Scatter plots
|
||||
"create_scatter_figure",
|
||||
"create_bubble_chart",
|
||||
# Radar charts
|
||||
"create_radar_figure",
|
||||
"create_comparison_radar",
|
||||
# Demographics
|
||||
"create_age_pyramid",
|
||||
"create_donut_chart",
|
||||
"create_income_distribution",
|
||||
]
|
||||
249
portfolio_app/figures/toronto/bar_charts.py
Normal file
249
portfolio_app/figures/toronto/bar_charts.py
Normal file
@@ -0,0 +1,249 @@
|
||||
"""Bar chart figure factories for dashboard visualizations."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_ranking_bar(
|
||||
data: list[dict[str, Any]],
|
||||
name_column: str,
|
||||
value_column: str,
|
||||
title: str | None = None,
|
||||
top_n: int = 10,
|
||||
bottom_n: int = 10,
|
||||
color_top: str = COLOR_POSITIVE,
|
||||
color_bottom: str = COLOR_NEGATIVE,
|
||||
value_format: str = ",.0f",
|
||||
) -> go.Figure:
|
||||
"""Create horizontal bar chart showing top and bottom rankings.
|
||||
|
||||
Args:
|
||||
data: List of data records.
|
||||
name_column: Column name for labels.
|
||||
value_column: Column name for values.
|
||||
title: Optional chart title.
|
||||
top_n: Number of top items to show.
|
||||
bottom_n: Number of bottom items to show.
|
||||
color_top: Color for top performers.
|
||||
color_bottom: Color for bottom performers.
|
||||
value_format: Number format string for values.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Rankings")
|
||||
|
||||
df = pd.DataFrame(data).sort_values(value_column, ascending=False)
|
||||
|
||||
# Get top and bottom
|
||||
top_df = df.head(top_n).copy()
|
||||
bottom_df = df.tail(bottom_n).copy()
|
||||
|
||||
top_df["group"] = "Top"
|
||||
bottom_df["group"] = "Bottom"
|
||||
|
||||
# Combine with gap in the middle
|
||||
combined = pd.concat([top_df, bottom_df])
|
||||
combined["color"] = combined["group"].map(
|
||||
{"Top": color_top, "Bottom": color_bottom}
|
||||
)
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Add top bars
|
||||
fig.add_trace(
|
||||
go.Bar(
|
||||
y=top_df[name_column],
|
||||
x=top_df[value_column],
|
||||
orientation="h",
|
||||
marker_color=color_top,
|
||||
name="Top",
|
||||
text=top_df[value_column].apply(lambda x: f"{x:{value_format}}"),
|
||||
textposition="auto",
|
||||
hovertemplate=f"%{{y}}<br>{value_column}: %{{x:{value_format}}}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
# Add bottom bars
|
||||
fig.add_trace(
|
||||
go.Bar(
|
||||
y=bottom_df[name_column],
|
||||
x=bottom_df[value_column],
|
||||
orientation="h",
|
||||
marker_color=color_bottom,
|
||||
name="Bottom",
|
||||
text=bottom_df[value_column].apply(lambda x: f"{x:{value_format}}"),
|
||||
textposition="auto",
|
||||
hovertemplate=f"%{{y}}<br>{value_column}: %{{x:{value_format}}}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
barmode="group",
|
||||
showlegend=True,
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"autorange": "reversed", "title": None},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_stacked_bar(
|
||||
data: list[dict[str, Any]],
|
||||
x_column: str,
|
||||
value_column: str,
|
||||
category_column: str,
|
||||
title: str | None = None,
|
||||
color_map: dict[str, str] | None = None,
|
||||
show_percentages: bool = False,
|
||||
) -> go.Figure:
|
||||
"""Create stacked bar chart for breakdown visualizations.
|
||||
|
||||
Args:
|
||||
data: List of data records.
|
||||
x_column: Column name for x-axis categories.
|
||||
value_column: Column name for values.
|
||||
category_column: Column name for stacking categories.
|
||||
title: Optional chart title.
|
||||
color_map: Mapping of category to color.
|
||||
show_percentages: Whether to normalize to 100%.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Breakdown")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Default color scheme using accessible palette
|
||||
if color_map is None:
|
||||
categories = df[category_column].unique()
|
||||
colors = CHART_PALETTE[: len(categories)]
|
||||
color_map = dict(zip(categories, colors, strict=False))
|
||||
|
||||
fig = px.bar(
|
||||
df,
|
||||
x=x_column,
|
||||
y=value_column,
|
||||
color=category_column,
|
||||
color_discrete_map=color_map,
|
||||
barmode="stack",
|
||||
text=value_column if not show_percentages else None,
|
||||
)
|
||||
|
||||
if show_percentages:
|
||||
fig.update_traces(texttemplate="%{y:.1f}%", textposition="inside")
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_horizontal_bar(
|
||||
data: list[dict[str, Any]],
|
||||
name_column: str,
|
||||
value_column: str,
|
||||
title: str | None = None,
|
||||
color: str = CHART_PALETTE[0],
|
||||
value_format: str = ",.0f",
|
||||
sort: bool = True,
|
||||
) -> go.Figure:
|
||||
"""Create simple horizontal bar chart.
|
||||
|
||||
Args:
|
||||
data: List of data records.
|
||||
name_column: Column name for labels.
|
||||
value_column: Column name for values.
|
||||
title: Optional chart title.
|
||||
color: Bar color.
|
||||
value_format: Number format string.
|
||||
sort: Whether to sort by value descending.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Bar Chart")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
if sort:
|
||||
df = df.sort_values(value_column, ascending=True)
|
||||
|
||||
fig = go.Figure(
|
||||
go.Bar(
|
||||
y=df[name_column],
|
||||
x=df[value_column],
|
||||
orientation="h",
|
||||
marker_color=color,
|
||||
text=df[value_column].apply(lambda x: f"{x:{value_format}}"),
|
||||
textposition="outside",
|
||||
hovertemplate=f"%{{y}}<br>Value: %{{x:{value_format}}}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "title": None},
|
||||
yaxis={"title": None},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def _create_empty_figure(title: str) -> go.Figure:
|
||||
"""Create an empty figure with a message."""
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
return fig
|
||||
@@ -5,6 +5,13 @@ from typing import Any
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_choropleth_figure(
|
||||
geojson: dict[str, Any] | None,
|
||||
@@ -55,9 +62,9 @@ def create_choropleth_figure(
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title or "Toronto Housing Map",
|
||||
height=500,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
fig.add_annotation(
|
||||
text="No geometry data available. Complete QGIS digitization to enable map.",
|
||||
@@ -66,7 +73,7 @@ def create_choropleth_figure(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": "#888888"},
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -98,17 +105,17 @@ def create_choropleth_figure(
|
||||
margin={"l": 0, "r": 0, "t": 40, "b": 0},
|
||||
title=title,
|
||||
height=500,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
coloraxis_colorbar={
|
||||
"title": {
|
||||
"text": color_column.replace("_", " ").title(),
|
||||
"font": {"color": "#c9c9c9"},
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"thickness": 15,
|
||||
"len": 0.7,
|
||||
"tickfont": {"color": "#c9c9c9"},
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
)
|
||||
|
||||
242
portfolio_app/figures/toronto/demographics.py
Normal file
242
portfolio_app/figures/toronto/demographics.py
Normal file
@@ -0,0 +1,242 @@
|
||||
"""Demographics-specific chart factories."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PALETTE_GENDER,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_age_pyramid(
|
||||
data: list[dict[str, Any]],
|
||||
age_groups: list[str],
|
||||
male_column: str = "male",
|
||||
female_column: str = "female",
|
||||
title: str | None = None,
|
||||
) -> go.Figure:
|
||||
"""Create population pyramid by age and gender.
|
||||
|
||||
Args:
|
||||
data: List with one record per age group containing male/female counts.
|
||||
age_groups: List of age group labels in order (youngest to oldest).
|
||||
male_column: Column name for male population.
|
||||
female_column: Column name for female population.
|
||||
title: Optional chart title.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data or not age_groups:
|
||||
return _create_empty_figure(title or "Age Distribution")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Ensure data is ordered by age groups
|
||||
if "age_group" in df.columns:
|
||||
df["age_order"] = df["age_group"].apply(
|
||||
lambda x: age_groups.index(x) if x in age_groups else -1
|
||||
)
|
||||
df = df.sort_values("age_order")
|
||||
|
||||
male_values = df[male_column].tolist() if male_column in df.columns else []
|
||||
female_values = df[female_column].tolist() if female_column in df.columns else []
|
||||
|
||||
# Make male values negative for pyramid effect
|
||||
male_values_neg = [-v for v in male_values]
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Male bars (left side, negative values)
|
||||
fig.add_trace(
|
||||
go.Bar(
|
||||
y=age_groups,
|
||||
x=male_values_neg,
|
||||
orientation="h",
|
||||
name="Male",
|
||||
marker_color=PALETTE_GENDER["male"],
|
||||
hovertemplate="%{y}<br>Male: %{customdata:,}<extra></extra>",
|
||||
customdata=male_values,
|
||||
)
|
||||
)
|
||||
|
||||
# Female bars (right side, positive values)
|
||||
fig.add_trace(
|
||||
go.Bar(
|
||||
y=age_groups,
|
||||
x=female_values,
|
||||
orientation="h",
|
||||
name="Female",
|
||||
marker_color=PALETTE_GENDER["female"],
|
||||
hovertemplate="%{y}<br>Female: %{x:,}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
# Calculate max for symmetric axis
|
||||
max_val = max(max(male_values, default=0), max(female_values, default=0))
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
barmode="overlay",
|
||||
bargap=0.1,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"title": "Population",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"range": [-max_val * 1.1, max_val * 1.1],
|
||||
"tickvals": [-max_val, -max_val / 2, 0, max_val / 2, max_val],
|
||||
"ticktext": [
|
||||
f"{max_val:,.0f}",
|
||||
f"{max_val / 2:,.0f}",
|
||||
"0",
|
||||
f"{max_val / 2:,.0f}",
|
||||
f"{max_val:,.0f}",
|
||||
],
|
||||
},
|
||||
yaxis={"title": None, "gridcolor": GRID_COLOR},
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": 1.02},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_donut_chart(
|
||||
data: list[dict[str, Any]],
|
||||
name_column: str,
|
||||
value_column: str,
|
||||
title: str | None = None,
|
||||
colors: list[str] | None = None,
|
||||
hole_size: float = 0.4,
|
||||
) -> go.Figure:
|
||||
"""Create donut chart for percentage breakdowns.
|
||||
|
||||
Args:
|
||||
data: List of data records with name and value.
|
||||
name_column: Column name for labels.
|
||||
value_column: Column name for values.
|
||||
title: Optional chart title.
|
||||
colors: List of colors for segments.
|
||||
hole_size: Size of center hole (0-1).
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Distribution")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Use accessible palette by default
|
||||
if colors is None:
|
||||
colors = CHART_PALETTE
|
||||
|
||||
fig = go.Figure(
|
||||
go.Pie(
|
||||
labels=df[name_column],
|
||||
values=df[value_column],
|
||||
hole=hole_size,
|
||||
marker_colors=colors[: len(df)],
|
||||
textinfo="percent+label",
|
||||
textposition="outside",
|
||||
hovertemplate="%{label}<br>%{value:,} (%{percent})<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
showlegend=False,
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_income_distribution(
|
||||
data: list[dict[str, Any]],
|
||||
bracket_column: str,
|
||||
count_column: str,
|
||||
title: str | None = None,
|
||||
color: str = CHART_PALETTE[3], # Teal
|
||||
) -> go.Figure:
|
||||
"""Create histogram-style bar chart for income distribution.
|
||||
|
||||
Args:
|
||||
data: List of data records with income brackets and counts.
|
||||
bracket_column: Column name for income brackets.
|
||||
count_column: Column name for household counts.
|
||||
title: Optional chart title.
|
||||
color: Bar color.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Income Distribution")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
fig = go.Figure(
|
||||
go.Bar(
|
||||
x=df[bracket_column],
|
||||
y=df[count_column],
|
||||
marker_color=color,
|
||||
text=df[count_column].apply(lambda x: f"{x:,}"),
|
||||
textposition="outside",
|
||||
hovertemplate="%{x}<br>Households: %{y:,}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"title": "Income Bracket",
|
||||
"gridcolor": GRID_COLOR,
|
||||
"tickangle": -45,
|
||||
},
|
||||
yaxis={
|
||||
"title": "Households",
|
||||
"gridcolor": GRID_COLOR,
|
||||
},
|
||||
margin={"l": 10, "r": 10, "t": 60, "b": 80},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def _create_empty_figure(title: str) -> go.Figure:
|
||||
"""Create an empty figure with a message."""
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
return fig
|
||||
167
portfolio_app/figures/toronto/radar.py
Normal file
167
portfolio_app/figures/toronto/radar.py
Normal file
@@ -0,0 +1,167 @@
|
||||
"""Radar/spider chart figure factory for multi-metric comparison."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR_DARK,
|
||||
PAPER_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_radar_figure(
|
||||
data: list[dict[str, Any]],
|
||||
metrics: list[str],
|
||||
name_column: str | None = None,
|
||||
title: str | None = None,
|
||||
fill: bool = True,
|
||||
colors: list[str] | None = None,
|
||||
) -> go.Figure:
|
||||
"""Create radar/spider chart for multi-axis comparison.
|
||||
|
||||
Each record in data represents one entity (e.g., a neighbourhood)
|
||||
with values for each metric that will be plotted on a separate axis.
|
||||
|
||||
Args:
|
||||
data: List of data records, each with values for the metrics.
|
||||
metrics: List of metric column names to display on radar axes.
|
||||
name_column: Column name for entity labels.
|
||||
title: Optional chart title.
|
||||
fill: Whether to fill the radar polygons.
|
||||
colors: List of colors for each data series.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data or not metrics:
|
||||
return _create_empty_figure(title or "Radar Chart")
|
||||
|
||||
# Use accessible palette by default
|
||||
if colors is None:
|
||||
colors = CHART_PALETTE
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Format axis labels
|
||||
axis_labels = [m.replace("_", " ").title() for m in metrics]
|
||||
|
||||
for i, record in enumerate(data):
|
||||
values = [record.get(m, 0) or 0 for m in metrics]
|
||||
# Close the radar polygon
|
||||
values_closed = values + [values[0]]
|
||||
labels_closed = axis_labels + [axis_labels[0]]
|
||||
|
||||
name = (
|
||||
record.get(name_column, f"Series {i + 1}")
|
||||
if name_column
|
||||
else f"Series {i + 1}"
|
||||
)
|
||||
color = colors[i % len(colors)]
|
||||
|
||||
fig.add_trace(
|
||||
go.Scatterpolar(
|
||||
r=values_closed,
|
||||
theta=labels_closed,
|
||||
name=name,
|
||||
line={"color": color, "width": 2},
|
||||
fill="toself" if fill else None,
|
||||
fillcolor=f"rgba{_hex_to_rgba(color, 0.2)}" if fill else None,
|
||||
hovertemplate="%{theta}: %{r:.1f}<extra></extra>",
|
||||
)
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
polar={
|
||||
"radialaxis": {
|
||||
"visible": True,
|
||||
"gridcolor": GRID_COLOR_DARK,
|
||||
"linecolor": GRID_COLOR_DARK,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"angularaxis": {
|
||||
"gridcolor": GRID_COLOR_DARK,
|
||||
"linecolor": GRID_COLOR_DARK,
|
||||
"tickfont": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
"bgcolor": PAPER_BG,
|
||||
},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
showlegend=len(data) > 1,
|
||||
legend={"orientation": "h", "yanchor": "bottom", "y": -0.2},
|
||||
margin={"l": 40, "r": 40, "t": 60, "b": 40},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_comparison_radar(
|
||||
selected_data: dict[str, Any],
|
||||
average_data: dict[str, Any],
|
||||
metrics: list[str],
|
||||
selected_name: str = "Selected",
|
||||
average_name: str = "City Average",
|
||||
title: str | None = None,
|
||||
) -> go.Figure:
|
||||
"""Create radar chart comparing a selection to city average.
|
||||
|
||||
Args:
|
||||
selected_data: Data for the selected entity.
|
||||
average_data: Data for the city average.
|
||||
metrics: List of metric column names.
|
||||
selected_name: Label for selected entity.
|
||||
average_name: Label for average.
|
||||
title: Optional chart title.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not selected_data or not average_data:
|
||||
return _create_empty_figure(title or "Comparison")
|
||||
|
||||
data = [
|
||||
{**selected_data, "__name__": selected_name},
|
||||
{**average_data, "__name__": average_name},
|
||||
]
|
||||
|
||||
return create_radar_figure(
|
||||
data=data,
|
||||
metrics=metrics,
|
||||
name_column="__name__",
|
||||
title=title,
|
||||
colors=[CHART_PALETTE[3], TEXT_SECONDARY], # Teal for selected, gray for avg
|
||||
)
|
||||
|
||||
|
||||
def _hex_to_rgba(hex_color: str, alpha: float) -> tuple[int, int, int, float]:
|
||||
"""Convert hex color to RGBA tuple."""
|
||||
hex_color = hex_color.lstrip("#")
|
||||
r = int(hex_color[0:2], 16)
|
||||
g = int(hex_color[2:4], 16)
|
||||
b = int(hex_color[4:6], 16)
|
||||
return (r, g, b, alpha)
|
||||
|
||||
|
||||
def _create_empty_figure(title: str) -> go.Figure:
|
||||
"""Create an empty figure with a message."""
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
194
portfolio_app/figures/toronto/scatter.py
Normal file
194
portfolio_app/figures/toronto/scatter.py
Normal file
@@ -0,0 +1,194 @@
|
||||
"""Scatter plot figure factory for correlation views."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_scatter_figure(
|
||||
data: list[dict[str, Any]],
|
||||
x_column: str,
|
||||
y_column: str,
|
||||
name_column: str | None = None,
|
||||
size_column: str | None = None,
|
||||
color_column: str | None = None,
|
||||
title: str | None = None,
|
||||
x_title: str | None = None,
|
||||
y_title: str | None = None,
|
||||
trendline: bool = False,
|
||||
color_scale: str = "Blues",
|
||||
) -> go.Figure:
|
||||
"""Create scatter plot for correlation visualization.
|
||||
|
||||
Args:
|
||||
data: List of data records.
|
||||
x_column: Column name for x-axis values.
|
||||
y_column: Column name for y-axis values.
|
||||
name_column: Column name for point labels (hover).
|
||||
size_column: Column name for point sizes.
|
||||
color_column: Column name for color encoding.
|
||||
title: Optional chart title.
|
||||
x_title: X-axis title.
|
||||
y_title: Y-axis title.
|
||||
trendline: Whether to add OLS trendline.
|
||||
color_scale: Plotly color scale for continuous colors.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Scatter Plot")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
# Build hover_data
|
||||
hover_data = {}
|
||||
if name_column and name_column in df.columns:
|
||||
hover_data[name_column] = True
|
||||
|
||||
# Create scatter plot
|
||||
fig = px.scatter(
|
||||
df,
|
||||
x=x_column,
|
||||
y=y_column,
|
||||
size=size_column if size_column and size_column in df.columns else None,
|
||||
color=color_column if color_column and color_column in df.columns else None,
|
||||
color_continuous_scale=color_scale,
|
||||
hover_name=name_column,
|
||||
trendline="ols" if trendline else None,
|
||||
opacity=0.7,
|
||||
)
|
||||
|
||||
# Style the markers
|
||||
fig.update_traces(
|
||||
marker={
|
||||
"line": {"width": 1, "color": "rgba(255,255,255,0.3)"},
|
||||
},
|
||||
)
|
||||
|
||||
# Trendline styling
|
||||
if trendline:
|
||||
fig.update_traces(
|
||||
selector={"mode": "lines"},
|
||||
line={"color": CHART_PALETTE[1], "dash": "dash", "width": 2},
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": x_title or x_column.replace("_", " ").title(),
|
||||
"zeroline": False,
|
||||
},
|
||||
yaxis={
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": y_title or y_column.replace("_", " ").title(),
|
||||
"zeroline": False,
|
||||
},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
showlegend=color_column is not None,
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def create_bubble_chart(
|
||||
data: list[dict[str, Any]],
|
||||
x_column: str,
|
||||
y_column: str,
|
||||
size_column: str,
|
||||
name_column: str | None = None,
|
||||
color_column: str | None = None,
|
||||
title: str | None = None,
|
||||
x_title: str | None = None,
|
||||
y_title: str | None = None,
|
||||
size_max: int = 50,
|
||||
) -> go.Figure:
|
||||
"""Create bubble chart with sized markers.
|
||||
|
||||
Args:
|
||||
data: List of data records.
|
||||
x_column: Column name for x-axis values.
|
||||
y_column: Column name for y-axis values.
|
||||
size_column: Column name for bubble sizes.
|
||||
name_column: Column name for labels.
|
||||
color_column: Column name for colors.
|
||||
title: Optional chart title.
|
||||
x_title: X-axis title.
|
||||
y_title: Y-axis title.
|
||||
size_max: Maximum marker size in pixels.
|
||||
|
||||
Returns:
|
||||
Plotly Figure object.
|
||||
"""
|
||||
if not data:
|
||||
return _create_empty_figure(title or "Bubble Chart")
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
fig = px.scatter(
|
||||
df,
|
||||
x=x_column,
|
||||
y=y_column,
|
||||
size=size_column,
|
||||
color=color_column,
|
||||
hover_name=name_column,
|
||||
size_max=size_max,
|
||||
opacity=0.7,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": x_title or x_column.replace("_", " ").title(),
|
||||
},
|
||||
yaxis={
|
||||
"gridcolor": GRID_COLOR,
|
||||
"title": y_title or y_column.replace("_", " ").title(),
|
||||
},
|
||||
margin={"l": 10, "r": 10, "t": 40, "b": 10},
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def _create_empty_figure(title: str) -> go.Figure:
|
||||
"""Create an empty figure with a message."""
|
||||
fig = go.Figure()
|
||||
fig.add_annotation(
|
||||
text="No data available",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"size": 14, "color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"visible": False},
|
||||
yaxis={"visible": False},
|
||||
)
|
||||
return fig
|
||||
@@ -4,6 +4,14 @@ from typing import Any
|
||||
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
COLOR_NEGATIVE,
|
||||
COLOR_POSITIVE,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
)
|
||||
|
||||
|
||||
def create_metric_card_figure(
|
||||
value: float | int | str,
|
||||
@@ -59,8 +67,12 @@ def create_metric_card_figure(
|
||||
"relative": False,
|
||||
"valueformat": ".1f",
|
||||
"suffix": delta_suffix,
|
||||
"increasing": {"color": "green" if positive_is_good else "red"},
|
||||
"decreasing": {"color": "red" if positive_is_good else "green"},
|
||||
"increasing": {
|
||||
"color": COLOR_POSITIVE if positive_is_good else COLOR_NEGATIVE
|
||||
},
|
||||
"decreasing": {
|
||||
"color": COLOR_NEGATIVE if positive_is_good else COLOR_POSITIVE
|
||||
},
|
||||
}
|
||||
|
||||
fig.add_trace(go.Indicator(**indicator_config))
|
||||
@@ -68,9 +80,9 @@ def create_metric_card_figure(
|
||||
fig.update_layout(
|
||||
height=120,
|
||||
margin={"l": 20, "r": 20, "t": 40, "b": 20},
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font={"family": "Inter, sans-serif", "color": "#c9c9c9"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font={"family": "Inter, sans-serif", "color": TEXT_PRIMARY},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -5,6 +5,15 @@ from typing import Any
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
|
||||
from portfolio_app.design import (
|
||||
CHART_PALETTE,
|
||||
GRID_COLOR,
|
||||
PAPER_BG,
|
||||
PLOT_BG,
|
||||
TEXT_PRIMARY,
|
||||
TEXT_SECONDARY,
|
||||
)
|
||||
|
||||
|
||||
def create_price_time_series(
|
||||
data: list[dict[str, Any]],
|
||||
@@ -38,14 +47,14 @@ def create_price_time_series(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -59,6 +68,7 @@ def create_price_time_series(
|
||||
y=price_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
@@ -67,6 +77,7 @@ def create_price_time_series(
|
||||
y=price_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(line_color=CHART_PALETTE[0])
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
@@ -76,11 +87,11 @@ def create_price_time_series(
|
||||
yaxis_tickprefix="$",
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -118,14 +129,14 @@ def create_volume_time_series(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=350,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -140,6 +151,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.bar(
|
||||
@@ -148,6 +160,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(marker_color=CHART_PALETTE[0])
|
||||
else:
|
||||
if group_column and group_column in df.columns:
|
||||
fig = px.line(
|
||||
@@ -156,6 +169,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
color=group_column,
|
||||
title=title,
|
||||
color_discrete_sequence=CHART_PALETTE,
|
||||
)
|
||||
else:
|
||||
fig = px.line(
|
||||
@@ -164,6 +178,7 @@ def create_volume_time_series(
|
||||
y=volume_column,
|
||||
title=title,
|
||||
)
|
||||
fig.update_traces(line_color=CHART_PALETTE[0])
|
||||
|
||||
fig.update_layout(
|
||||
height=350,
|
||||
@@ -172,11 +187,11 @@ def create_volume_time_series(
|
||||
yaxis_title=volume_column.replace("_", " ").title(),
|
||||
yaxis_tickformat=",",
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
)
|
||||
|
||||
return fig
|
||||
@@ -211,14 +226,14 @@ def create_market_comparison_chart(
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
showarrow=False,
|
||||
font={"color": "#888888"},
|
||||
font={"color": TEXT_SECONDARY},
|
||||
)
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=400,
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
)
|
||||
return fig
|
||||
|
||||
@@ -230,8 +245,6 @@ def create_market_comparison_chart(
|
||||
|
||||
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
||||
|
||||
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"]
|
||||
|
||||
for i, metric in enumerate(metrics[:4]):
|
||||
if metric not in df.columns:
|
||||
continue
|
||||
@@ -242,7 +255,7 @@ def create_market_comparison_chart(
|
||||
x=df[date_column],
|
||||
y=df[metric],
|
||||
name=metric.replace("_", " ").title(),
|
||||
line={"color": colors[i % len(colors)]},
|
||||
line={"color": CHART_PALETTE[i % len(CHART_PALETTE)]},
|
||||
),
|
||||
secondary_y=secondary,
|
||||
)
|
||||
@@ -252,18 +265,18 @@ def create_market_comparison_chart(
|
||||
height=400,
|
||||
margin={"l": 40, "r": 40, "t": 50, "b": 40},
|
||||
hovermode="x unified",
|
||||
paper_bgcolor="rgba(0,0,0,0)",
|
||||
plot_bgcolor="rgba(0,0,0,0)",
|
||||
font_color="#c9c9c9",
|
||||
xaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
yaxis={"gridcolor": "#333333", "linecolor": "#444444"},
|
||||
paper_bgcolor=PAPER_BG,
|
||||
plot_bgcolor=PLOT_BG,
|
||||
font_color=TEXT_PRIMARY,
|
||||
xaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
yaxis={"gridcolor": GRID_COLOR, "linecolor": GRID_COLOR},
|
||||
legend={
|
||||
"orientation": "h",
|
||||
"yanchor": "bottom",
|
||||
"y": 1.02,
|
||||
"xanchor": "right",
|
||||
"x": 1,
|
||||
"font": {"color": "#c9c9c9"},
|
||||
"font": {"color": TEXT_PRIMARY},
|
||||
},
|
||||
)
|
||||
|
||||
@@ -290,13 +303,13 @@ def add_policy_markers(
|
||||
if not policy_events:
|
||||
return fig
|
||||
|
||||
# Color mapping for policy categories
|
||||
# Color mapping for policy categories using design tokens
|
||||
category_colors = {
|
||||
"monetary": "#1f77b4", # Blue
|
||||
"tax": "#2ca02c", # Green
|
||||
"regulatory": "#ff7f0e", # Orange
|
||||
"supply": "#9467bd", # Purple
|
||||
"economic": "#d62728", # Red
|
||||
"monetary": CHART_PALETTE[0], # Blue
|
||||
"tax": CHART_PALETTE[3], # Teal/green
|
||||
"regulatory": CHART_PALETTE[1], # Orange
|
||||
"supply": CHART_PALETTE[6], # Pink
|
||||
"economic": CHART_PALETTE[5], # Vermillion
|
||||
}
|
||||
|
||||
# Symbol mapping for expected direction
|
||||
@@ -313,7 +326,7 @@ def add_policy_markers(
|
||||
title = event.get("title", "Policy Event")
|
||||
level = event.get("level", "federal")
|
||||
|
||||
color = category_colors.get(category, "#666666")
|
||||
color = category_colors.get(category, TEXT_SECONDARY)
|
||||
symbol = direction_symbols.get(direction, "circle")
|
||||
|
||||
# Add vertical line for the event
|
||||
@@ -335,7 +348,7 @@ def add_policy_markers(
|
||||
"symbol": symbol,
|
||||
"size": 12,
|
||||
"color": color,
|
||||
"line": {"width": 1, "color": "white"},
|
||||
"line": {"width": 1, "color": TEXT_PRIMARY},
|
||||
},
|
||||
name=title,
|
||||
hovertemplate=(
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user