Files
personal-portfolio/notebooks/amenities/amenity_radar.ipynb
lmiranda 1eba95d4d1 docs: Complete Phase 6 notebooks and Phase 7 documentation review
Phase 6 - Jupyter Notebooks (15 total):
- Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter
- Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar
- Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line
- Demographics tab: income_choropleth, age_distribution, population_density_bar
- Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar

Phase 7 - Documentation:
- Updated CLAUDE.md with Sprint 9 completion status
- Added notebooks directory to application structure
- Expanded figures directory listing

Closes #71, #72, #73, #74, #75, #76, #77

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-17 12:10:46 -05:00

174 lines
4.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amenity Radar Chart\n",
"\n",
"Spider/radar chart comparing amenity categories for selected neighbourhoods."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Data Reference\n",
"\n",
"### Source Tables\n",
"\n",
"| Table | Grain | Key Columns |\n",
"|-------|-------|-------------|\n",
"| `mart_neighbourhood_amenities` | neighbourhood × year | parks_index, schools_index, transit_index |\n",
"\n",
"### SQL Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"import os\n",
"\n",
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
"\n",
"query = \"\"\"\n",
"SELECT\n",
" neighbourhood_name,\n",
" parks_index,\n",
" schools_index,\n",
" transit_index,\n",
" amenity_index,\n",
" amenity_tier\n",
"FROM mart_neighbourhood_amenities\n",
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
"ORDER BY amenity_index DESC\n",
"\"\"\"\n",
"\n",
"df = pd.read_sql(query, engine)\n",
"print(f\"Loaded {len(df)} neighbourhoods\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation Steps\n",
"\n",
"1. Select top 5 and bottom 5 neighbourhoods by amenity index\n",
"2. Reshape for radar chart format"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Select representative neighbourhoods\n",
"top_5 = df.head(5)\n",
"bottom_5 = df.tail(5)\n",
"\n",
"# Prepare radar data\n",
"categories = ['Parks', 'Schools', 'Transit']\n",
"index_columns = ['parks_index', 'schools_index', 'transit_index']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Top 5 Amenity-Rich Neighbourhoods:\")\n",
"display(top_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])\n",
"print(\"\\nBottom 5 Underserved Neighbourhoods:\")\n",
"display(bottom_5[['neighbourhood_name', 'parks_index', 'schools_index', 'transit_index', 'amenity_index']])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Data Visualization\n",
"\n",
"### Figure Factory\n",
"\n",
"Uses `create_radar` from `portfolio_app.figures.radar`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../..')\n",
"\n",
"from portfolio_app.figures.radar import create_radar_figure\n",
"\n",
"# Compare top neighbourhood vs city average (100)\n",
"top_hood = top_5.iloc[0]\n",
"\n",
"data = [\n",
" {\n",
" 'name': top_hood['neighbourhood_name'],\n",
" 'values': [top_hood['parks_index'], top_hood['schools_index'], top_hood['transit_index']],\n",
" 'categories': categories\n",
" },\n",
" {\n",
" 'name': 'City Average',\n",
" 'values': [100, 100, 100],\n",
" 'categories': categories\n",
" }\n",
"]\n",
"\n",
"fig = create_radar_figure(\n",
" data=data,\n",
" title=f\"Amenity Profile: {top_hood['neighbourhood_name']} vs City Average\",\n",
")\n",
"\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Index Interpretation\n",
"\n",
"| Value | Meaning |\n",
"|-------|--------|\n",
"| < 100 | Below city average |\n",
"| = 100 | City average |\n",
"| > 100 | Above city average |"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}