Phase 6 - Jupyter Notebooks (15 total): - Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter - Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar - Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line - Demographics tab: income_choropleth, age_distribution, population_density_bar - Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar Phase 7 - Documentation: - Updated CLAUDE.md with Sprint 9 completion status - Added notebooks directory to application structure - Expanded figures directory listing Closes #71, #72, #73, #74, #75, #76, #77 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
162 lines
3.8 KiB
Plaintext
162 lines
3.8 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Transit Accessibility Bar Chart\n",
|
||
"\n",
|
||
"Shows transit stops per 1,000 residents across Toronto neighbourhoods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_amenities` | neighbourhood × year | transit_per_1000, transit_index, transit_count |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" transit_per_1000,\n",
|
||
" transit_index,\n",
|
||
" transit_count,\n",
|
||
" population,\n",
|
||
" amenity_tier\n",
|
||
"FROM mart_neighbourhood_amenities\n",
|
||
"WHERE year = (SELECT MAX(year) FROM mart_neighbourhood_amenities)\n",
|
||
" AND transit_per_1000 IS NOT NULL\n",
|
||
"ORDER BY transit_per_1000 DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Sort by transit accessibility\n",
|
||
"2. Select top 20 for visualization"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"data = df.head(20).to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['neighbourhood_name', 'transit_per_1000', 'transit_index', 'transit_count']].head(10)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_horizontal_bar` from `portfolio_app.figures.bar_charts`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.bar_charts import create_horizontal_bar\n",
|
||
"\n",
|
||
"fig = create_horizontal_bar(\n",
|
||
" data=data,\n",
|
||
" name_column='neighbourhood_name',\n",
|
||
" value_column='transit_per_1000',\n",
|
||
" title='Top 20 Neighbourhoods by Transit Accessibility',\n",
|
||
" color='#00BCD4',\n",
|
||
" value_format='.2f',\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transit Statistics"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(f\"City-wide Transit Statistics:\")\n",
|
||
"print(f\" Total Transit Stops: {df['transit_count'].sum():,.0f}\")\n",
|
||
"print(f\" Average per 1,000 pop: {df['transit_per_1000'].mean():.2f}\")\n",
|
||
"print(f\" Median per 1,000 pop: {df['transit_per_1000'].median():.2f}\")\n",
|
||
"print(f\" Best Access: {df['transit_per_1000'].max():.2f} per 1,000\")\n",
|
||
"print(f\" Worst Access: {df['transit_per_1000'].min():.2f} per 1,000\")"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|