Phase 6 - Jupyter Notebooks (15 total): - Overview tab: livability_choropleth, top_bottom_10_bar, income_safety_scatter - Housing tab: affordability_choropleth, rent_trend_line, tenure_breakdown_bar - Safety tab: crime_rate_choropleth, crime_breakdown_bar, crime_trend_line - Demographics tab: income_choropleth, age_distribution, population_density_bar - Amenities tab: amenity_index_choropleth, amenity_radar, transit_accessibility_bar Phase 7 - Documentation: - Updated CLAUDE.md with Sprint 9 completion status - Added notebooks directory to application structure - Expanded figures directory listing Closes #71, #72, #73, #74, #75, #76, #77 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
187 lines
4.7 KiB
Plaintext
187 lines
4.7 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Crime Trend Line Chart\n",
|
||
"\n",
|
||
"Shows 5-year crime rate trends across Toronto."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_safety` | neighbourhood × year | year, crime_rate_per_100k, crime_yoy_change_pct |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" year,\n",
|
||
" AVG(crime_rate_per_100k) as avg_crime_rate,\n",
|
||
" AVG(assault_rate_per_100k) as avg_assault_rate,\n",
|
||
" AVG(auto_theft_rate_per_100k) as avg_auto_theft_rate,\n",
|
||
" AVG(break_enter_rate_per_100k) as avg_break_enter_rate,\n",
|
||
" SUM(total_incidents) as total_city_incidents,\n",
|
||
" AVG(crime_yoy_change_pct) as avg_yoy_change\n",
|
||
"FROM mart_neighbourhood_safety\n",
|
||
"WHERE year >= (SELECT MAX(year) - 5 FROM mart_neighbourhood_safety)\n",
|
||
"GROUP BY year\n",
|
||
"ORDER BY year\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} years of crime data\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Aggregate by year (city-wide)\n",
|
||
"2. Convert year to datetime\n",
|
||
"3. Melt for multi-line by crime type"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df['date'] = pd.to_datetime(df['year'].astype(str) + '-01-01')\n",
|
||
"\n",
|
||
"# Melt for multi-line\n",
|
||
"df_melted = df.melt(\n",
|
||
" id_vars=['year', 'date'],\n",
|
||
" value_vars=['avg_assault_rate', 'avg_auto_theft_rate', 'avg_break_enter_rate'],\n",
|
||
" var_name='crime_type',\n",
|
||
" value_name='rate_per_100k'\n",
|
||
")\n",
|
||
"\n",
|
||
"df_melted['crime_type'] = df_melted['crime_type'].map({\n",
|
||
" 'avg_assault_rate': 'Assault',\n",
|
||
" 'avg_auto_theft_rate': 'Auto Theft',\n",
|
||
" 'avg_break_enter_rate': 'Break & Enter'\n",
|
||
"})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[['year', 'avg_crime_rate', 'total_city_incidents', 'avg_yoy_change']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_price_time_series` (reused for any numeric trend)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.time_series import create_price_time_series\n",
|
||
"\n",
|
||
"data = df_melted.to_dict('records')\n",
|
||
"\n",
|
||
"fig = create_price_time_series(\n",
|
||
" data=data,\n",
|
||
" date_column='date',\n",
|
||
" price_column='rate_per_100k',\n",
|
||
" group_column='crime_type',\n",
|
||
" title='Toronto Crime Trends by Type (5 Years)',\n",
|
||
")\n",
|
||
"\n",
|
||
"# Remove dollar sign formatting since this is rate data\n",
|
||
"fig.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Overall Trend"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Total crime rate trend\n",
|
||
"total_data = df[['date', 'avg_crime_rate']].rename(columns={'avg_crime_rate': 'total_rate'}).to_dict('records')\n",
|
||
"\n",
|
||
"fig2 = create_price_time_series(\n",
|
||
" data=total_data,\n",
|
||
" date_column='date',\n",
|
||
" price_column='total_rate',\n",
|
||
" title='Toronto Overall Crime Rate Trend',\n",
|
||
")\n",
|
||
"fig2.update_layout(yaxis_tickprefix='', yaxis_title='Rate per 100K')\n",
|
||
"fig2.show()"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|