dbt creates mart tables in public_marts schema, not public. Updated all notebook SQL queries to use the correct schema. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
168 lines
4.2 KiB
Plaintext
168 lines
4.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Top & Bottom 10 Neighbourhoods Bar Chart\n",
|
||
"\n",
|
||
"Horizontal bar chart showing the highest and lowest scoring neighbourhoods by livability."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. Data Reference\n",
|
||
"\n",
|
||
"### Source Tables\n",
|
||
"\n",
|
||
"| Table | Grain | Key Columns |\n",
|
||
"|-------|-------|-------------|\n",
|
||
"| `mart_neighbourhood_overview` | neighbourhood × year | neighbourhood_name, livability_score |\n",
|
||
"\n",
|
||
"### SQL Query"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"from sqlalchemy import create_engine\n",
|
||
"import os\n",
|
||
"\n",
|
||
"engine = create_engine(os.environ.get('DATABASE_URL', 'postgresql://portfolio:portfolio@localhost:5432/portfolio'))\n",
|
||
"\n",
|
||
"query = \"\"\"\n",
|
||
"SELECT\n",
|
||
" neighbourhood_name,\n",
|
||
" livability_score,\n",
|
||
" safety_score,\n",
|
||
" affordability_score,\n",
|
||
" amenity_score\n",
|
||
"FROM public_marts.mart_neighbourhood_overview\n",
|
||
"WHERE year = (SELECT MAX(year) FROM public_marts.mart_neighbourhood_overview)\n",
|
||
" AND livability_score IS NOT NULL\n",
|
||
"ORDER BY livability_score DESC\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"df = pd.read_sql(query, engine)\n",
|
||
"print(f\"Loaded {len(df)} neighbourhoods with scores\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Transformation Steps\n",
|
||
"\n",
|
||
"1. Sort by livability_score descending\n",
|
||
"2. Take top 10 and bottom 10\n",
|
||
"3. Pass to ranking bar figure factory"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# The figure factory handles top/bottom selection internally\n",
|
||
"# Just prepare as list of dicts\n",
|
||
"data = df.to_dict('records')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Sample Output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"print(\"Top 5:\")\n",
|
||
"display(df.head(5))\n",
|
||
"print(\"\\nBottom 5:\")\n",
|
||
"display(df.tail(5))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2. Data Visualization\n",
|
||
"\n",
|
||
"### Figure Factory\n",
|
||
"\n",
|
||
"Uses `create_ranking_bar` from `portfolio_app.figures.bar_charts`.\n",
|
||
"\n",
|
||
"**Key Parameters:**\n",
|
||
"- `data`: List of dicts with all neighbourhoods\n",
|
||
"- `name_column`: 'neighbourhood_name'\n",
|
||
"- `value_column`: 'livability_score'\n",
|
||
"- `top_n`: 10 (green bars)\n",
|
||
"- `bottom_n`: 10 (red bars)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys\n",
|
||
"sys.path.insert(0, '../..')\n",
|
||
"\n",
|
||
"from portfolio_app.figures.bar_charts import create_ranking_bar\n",
|
||
"\n",
|
||
"fig = create_ranking_bar(\n",
|
||
" data=data,\n",
|
||
" name_column='neighbourhood_name',\n",
|
||
" value_column='livability_score',\n",
|
||
" title='Top & Bottom 10 Neighbourhoods by Livability',\n",
|
||
" top_n=10,\n",
|
||
" bottom_n=10,\n",
|
||
" color_top='#4CAF50', # Green for top performers\n",
|
||
" color_bottom='#F44336', # Red for bottom performers\n",
|
||
" value_format='.1f',\n",
|
||
")\n",
|
||
"\n",
|
||
"fig.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Interpretation\n",
|
||
"\n",
|
||
"- **Green bars**: Highest livability scores (best combination of safety, affordability, and amenities)\n",
|
||
"- **Red bars**: Lowest livability scores (areas that may need targeted investment)\n",
|
||
"\n",
|
||
"The ranking bar chart provides quick context for which neighbourhoods stand out at either extreme."
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python",
|
||
"version": "3.11.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|